

RESEARCH EXPO 17

THURSDAY, APRIL 20 - 1:30-6:00PM - UC SAN DIEGO

JacobsSchool.ucsd.edu/RE

JACOBS SCHOOL CORPORATE AFFILIATES PROGRAM

Amazon.com AppFolio AppFormix (Acelio) ASML CYMER Arista Networks ATA Engineering **BD** Biosciences **BD** Medical Bentley Systems **Booz Allen Hamilton** Bumble Bee Seafoods CISCO CliniComp Corning CPC Strategy **Cubic Transportation** Systems Data Torrent Dexcom Facebook General Atomics General Atomics Aeronautical Systems Google Greenlee Communications

Honda R&D

Hughes Network Systems IBM Corporation iboss Informatica

Intel

Intuit

IQ Analog

Kleinfelder

Kyocera America

Lawrence Livermore National Laboratory

Leidos

Lockheed Martin Rotary and Mission Systems

> Magma - One Stop Systems

> > Microsoft

Mitchell International

Mitek Systems

Mtell

NAVAIR

Nordson

Northrop Grumman Aerospace Systems

Northrop Grumman Corporate and Enterprise Shared Services

Northrop Grumman Mission Systems Ntrepid

Oracle

Qualcomm

Quartus

Raytheon Integrated Defense Systems

Raytheon Space & Airborne Systems

Rincon Research

Salesforce.com

Samsung Research America

Scientific Research Corporation (SRC)

Seamgen

Simplexity Product Development

Skyworks Solutions

Solar Turbines

Sony Interactive Entertainment Playstation

SONY Electronics

SPAWAR

Stevanato Group S.p.A.

Teradata Corporation

Thermo Fisher Scientific

UTC Aerospace Systems

ViaSat

Yahoo

Be part of this vital partnership between the Jacobs School of Engineering and its Corporate Affiliates Program +1 (858) 534-3148 JacobsCAP@ucsd.edu JacobsSchool.ucsd.edu/cap

RESEARCH EXPO 2017

Thank you to our generous sponsors

Lawrence Livermore National Laboratory

ASML CYMER

NORTHROP GRUMMAN

JacobsSchool.ucsd.edu/RE

AGENDA

1:30 PM	REGISTRATION
	Price Center, East Lobby - Level 2
2:00 PM-4:30 PM	POSTER SESSION
	Price Center West Ballroom A&B 210+ Graduate Students display their research results
2:30 PM- 4:30 PM	FACULTY TALKS
	Price Center Forum - Level 4
2:30 PM	ACHIEVING DEEP DECARBONIZATION OF THE GLOBAL ECONOMY: ENGINEERING AND POLICY David Victor Deep Decarbonization Initiative School of Global Policy & Strategy
3:00 PM	PERSPECTIVES ON CONTEXTUAL ROBOTICS Laurel Riek Contextual Robotics Institute Computer Science and Engineering Department
3:30 PM	VIRTUAL TOUCH: SMART MATERIALS FOR HUMAN-MACHINE INTERACTION Darren Lipomi Center for Wearable Sensors Sustainable Power and Energy Center NanoEngineering Department
4:00 PM	BRINGING THE MACHINE INTO THE LOOP OF MACHINE LEARNING Farinaz Koushanfar Electrical and Computer Engineering Department Adaptive Computing and Embedded Systems Lab
4:30 PM-6:00 PM	NETWORKING RECEPTION
	Price Center East Ballroom Network with faculty, students and industry partners

TABLE OF CONTENTS

FACULTY LIGHTNING TALKS		PAGES
		6-9
POSTERS BY AGILE RESEARCH CENTER		
	Posters	Pages
Center for Wearable Sensors	1-9	11
Center for Visual Computing	10 – 21	12 – 13
CaliBaja Center for Resilient Materials and Systems	22-36	14 – 15
Center for Extreme Events Research	37–44	16
Sustainable Power and Energy Center	45–51	17

POSTERS BY DEPARTMENT

	Posters	Pages
Bioengineering	52 – 71	18–19
Computer Science and Engineering	72–105	20-22
Electrical and Computer Engineering	106 – 127	23–24
Mechanical and Aerospace Engineering	128 – 174	25–29
NanoEngineering	175 – 197	30-32
Structural Engineering	198 – 216	33-34

Departments, Programs and Research Centers	35
Research Expo Poster Judges	36-38
Notes	40-41
Map — Poster Session	42-43

DEEP DECARBONIZATION INITIATIVE

2:30 PM ACHIEVING DEEP DECARBONIZATION OF THE GLOBAL ECONOMY: ENGINEERING AND POLICY

Presenter: David Victor Deep Decarbonization Initiative School of Global Policy & Strategy

There is now a widespread technical agreement that stopping global climate change requires essentially zero emissions of carbon dioxide and other warming gases. Much less agreeable has been a political strategy for achieving that goal. This talk will focus on the technology that could likely scale in the real world to achieve zero global emissions. It will also focus on strategies that leading jurisdictions, such as California, could use to accelerate the pace of global decarbonization.

ABOUT: DEEP DECARBONIZATION INITIATIVE

The mission of the UC San Diego Deep Decarbonization Initiative is to help guide a transition in the global economy toward net-zero carbon emissions. The aim is to help real societies link the best science and technology with politically realistic economic strategies for putting new energy systems into place on the scale required to make a difference in global carbon emissions while meeting the energy needs of all of humanity. To accomplish this goal, the Deep Decarbonization Initiative pursues research from the combined perspectives of the social sciences, engineering and the physical and biological sciences. The Initiative organizes research across academic disciplines that engage energy industry officials, elected officials and other policy makers.

deepdecarbon.ucsd.edu

CONTEXTUAL ROBOTICS INSTITUTE

3:00 PM PERSPECTIVES ON CONTEXTUAL ROBOTICS Presenter: Laurel Riek Professor, Computer Science and Engineering Director, The Robotics and Healthcare Engineering Lab

Robots are no longer separated from people by cages. They are now entering our daily lives - in the home and on the road, in offices and in hospitals. To operate proximately with people, robots need the ability to dynamically understand and model human activities, understand their context, and select appropriate actions. They also need to work with and learn from people longitudinally, in fluent and contingent ways. My research team explores these topics in depth, and designs algorithms for robots able to achieve these goals. There are many applications of our work, including in neurorehabiltiaton, critical care, healthy aging, and manufacturing. This talk will highlight several recent projects in these areas.

ABOUT: CONTEXTUAL ROBOTICS INSTITUTE

The Contextual Robotics Institute at UC San Diego aims to advance the research required to develop useful robotic systems for the public good that sense the environment around them; learn from experience and situational awareness; and act autonomously to assist humans in a course of action. The Institute advances contextual robotics through fundamental grand challenge research; applied-research projects; and education programs that provide the talent and innovation necessary to establish San Diego / Cali Baja as a leading robotics hub.

contextualrobotics.ucsd.edu

CENTER FOR WEARABLE SENSORS

3:30 PM VIRTUAL TOUCH: SMART MATERIALS FOR HUMAN-MACHINE INTERACTION

Presenter: Darren Lipomi Professor, NanoEngineering Department Director, Laboratory for soft electronics, solar cells, and nano-manufacturing

The sense of touch has great power to elicit thoughtful or emotional responses (pleasant or unpleasant), and to convey information. While human culture is replete with artifacts that interface with the senses of sight, hearing, taste, and smell, objects designed to convey information or trigger emotion by interfacing with the sense of touch represent an open area for investigation. My research group is developing soft materials that can simulate different tactile sensations: rough or smooth, hot or cold, soft or hard, or even slimy. We can then use virtual reality and wearable haptic interfaces to transduce these signals to a user. The key innovative element in our work is the development of electroactive polymers and other soft materials that form conformal mechanical interfaces with human skin. This work leverages our experience in stretchable organic semiconductors, wearable sensors, and nanofabrication, and represents an interface between materials engineering and psychophysics. We envision applications in robotic surgery and surgical training, education, and simulated environments for consumer electronics.

Posters from the Center for Wearable Sensors are listed on page 11.

ABOUT: CENTER FOR WEARABLE SENSORS

The Center for Wearable Sensors brings together top UC San Diego faculty, students and researchers in chemical sensors and biosensors, electrophysiological monitoring, soft electronics and stretchable materials, sensors-electronics integration and fabrication, glucose monitoring, wireless communications, on-body energy harvesting, ultra-low-power instrumentation, data processing, data fusion, and machine learning. This coordinated environment fosters the acceleration of research and system development, and it helps prepare affiliated students to become leaders in the wearable systems workforce.

cws.ucsd.edu

ADAPTIVE COMPUTING AND EMBEDDED SYSTEMS

4:00 PM

BRINGING THE MACHINE INTO THE LOOP OF MACHINE LEARNING

Presenter: Farinaz Koushanfar Professor, Electrical and Computer Engineering Department Director, Adaptive Computing and Embedded Systems

Contemporary analytical algorithms are often focused on functionality and accuracy with system performance as an afterthought. As their use/scale grows and the computing platforms become diverse, spanning from servers and desktops to smartphones and internet of things (iot) devices, functionality is not just about algorithmic efficiency and accuracy, but also practicality on real-world computing machines. One-size-fits-all solutions will not meet the physical needs of emerging analytical application scenarios. In this talk, I will present our research on novel automated computing frameworks that bring hardware into the loop of designing scalable inference algorithms and learning systems, supported by both theoretical and practical results. Proof-of-concept evaluations on diverse datasets, applications, algorithms, and platforms demonstrate orders of magnitude efficiency compared to the best prior art.

aceslab.org

GRADUATE STUDENT POSTERS

CENTER FOR WEARABLE SENSORS

- **1. A SMART BANDAGE WITH CLOSED-LOOP INTEGRATED DRUG DELIVERY** Students: Da Ying, Zhenlong Huang | Professors: Drew A. Hall, Sheng Xu
- 2. THE LANGUAGE OF GLOVE: A WEARABLE WIRELESS GESTURE DECODER FOR LOW-POWER, FLEXIBLE AND STRETCHABLE HYBRID ELECTRONICS

Student: Timothy Francis O'connor | Professor: Darren J. Lipomi

3. A WEARABLE CHEMICAL-ELECTROPHYSIOLOGICAL HYBRID BIOSENSING SYSTEM FOR REAL-TIME HEALTH AND FITNESS MONITORING

Students: Somayeh Imani, Amay Bandodkar | Professors: Patrick P. Mercier, Joseph Wang

4. CHARACTERIZATION OF NOVEL ORGANIC SHORT WAVELENGTH INFRARED PHOTOSENSORS

Student: Weichuan Yao | Professor: Tse Nga Ng

5. MODULAR AND EXTENSIBLE PLATFORM DESIGNS FOR SMART HEALTH

Student: Christine Shun Yee Chan | Professor: Tajana S. Rosing

6. EYEGLASSES WIRELESS ELECTROCHEMICAL SENSOR PLATFORM Student: Juliane R Sempionatto Moreto | Professor: Joseph Wang

7. PRINTED, STRETCHABLE ZINC-SILVER BATTERIES FOR WEARABLE ELECTRONICS

Students: Rajan Kumar, Lin Yin | Professor: Joseph Wang, Ying S. Meng

8. STRETCHABLE BIOFUEL CELLS AS WEARABLE TEXTILE-BASED SELF-POWERED SENSORS

Student: Itthipon Jeerapan | Professor: Joseph Wang

9. TATTOO-BASED WEARABLE IONTOPHORETIC-BIOSENSING DEVICE FOR NONINVASIVE ALCOHOL MONITORING

Students: Jayoung Kim, Itthipon Jeerapan, Somayeh Imani | Professors: Joseph Wang, Patrick P. Mercier

CENTER FOR VISUAL COMPUTING

10. ROBUST ENERGY MINIMIZATION FOR BRDF-INVARIANT SHAPE FROM LIGHT FIELDS

Students: Zhengqin Li, Zexiang Xu | Professors: Manmohan Chandraker, Ravi Ramamoorthi

11. GOOGLE MAP ORIENTED VISUAL NAVIGATION FOR UAVS

Student: Mo Shan | Professor: Nikolay A. Atanasov

12. DEPTH AND IMAGE RESTORATION FROM LIGHT FIELD IN A SCATTERING MEDIUM

Student: Zachary Paul Murez Professors: David Kriegman, Ravi Ramamoorthi

13. DOWNSAMPLING SCATTERING PARAMETERS FOR RENDERING ANISOTROPIC MEDIA

Student: Lifan Wu | Professor: Ravi Ramamoorthi

14. MINIMAL BRDF SAMPLING FOR TWO-SHOT NEAR-FIELD REFLECTANCE ACQUISITION

Student: Zexiang Xu | Professor: Ravi Ramamoorthi

15. 3D FACE RECONSTRUCTION AND FACE ASSISTED VIDEO STABLIZATION

Student: Jiyang Yu | Professor: Ravi Ramamoorthi

16. MULTIPLE AXIS-ALIGNED FILTERS FOR RENDERING OF COMBINED DISTRIBUTION EFFECTS

Students: Alexandr Kuznetsov, Lifan Wu, Ling-Qi Yan Professor: Ravi Ramamoorthi

17. GRADIENT DOMAIN VERTEX CONNECTION AND MERGING

Student: Weilun Sun | Professor: Ravi Ramamoorthi

18. PATCH-BASED OPTIMIZATION FOR IMAGE-BASED TEXTURE MAPPING

Students: Sai Bi, Nima Khademi Kalantari Professor: Ravi Ramamoorthi

19. ANALYTIC AREA LIGHTING FOR PRECOMPUTED RADIANCE TRANSFER Student: Jingwen Wang | Professor: Ravi Ramamoorthi

20. A UNIFIED MULTI-SCALE DEEP CONVOLUTIONAL NEURAL NETWORK FOR FAST OBJECT DETECTION

Student: Zhaowei Cai | Professor: Nuno M. Vasconcelos

21. LEARNING TO AUGMENT VISUAL DATA

Student: Mandar Dilip Dixit | Professor: Nuno M. Vasconcelos

CALIBAJA CENTER FOR RESILIENT MATERIALS & SYSTEMS

22. ELECTROKINETIC FLOW OVER PATTERNED HYDROPHOBIC SURFACES Student: Bei Fan | Professor: Prabhakar R. Bandaru

23. RECORD EFFICIENCY OF GRAPHENE/SILICON SOLAR CELL WITH PASSIVATED BACK CONTACT

Student: Serdar Yavuz | Professor: Prabhakar R. Bandaru

24. BLAST WAVE REFLECTION PATTERNS

Student: Nicholas Amen | Professor: Veronica Eliasson

- 25. DYNAMIC FRACTURE BEHAVIOR OF POLYMERIC MATERIALS Student: Rodrigo Enrique Chavez Morales I Professor: Veronica Eliasson
- 26. FABRICATION OF MESOPORES ON GOLD-COATED POLYSTYRENE PARTICLES

Student: Seongcheol Choi | Professor: Olivia A. Graeve

27. IN VITRO EVALUATION OF LUMINESCENT RARE-EARTH DOPED HYDROXYAPATITE SCAFFOLDS

Student: Fabian Martin Martinez Pallares | Professor: Olivia A. Graeve

28. CONTROLLING THE SHAPE AND PARTICLE SIZE OF LAB6 NANOSTRUCTURES: A STEP TOWARDS DEVELOPING NEW COMPOSITE MATERIALS

Student: Carlos Ingram Vargas Consuelos | Professor: Olivia A. Graeve

29. FABRICATION AND CHARACTERIZATION OF COMPLEX SIC/SIC FIBER COMPOSITE PROCESSED BY SPARK PLASMA SINTERING (SPS)

Student: Uriel Esaud Perez Jara | Professor: Olivia A. Graeve

30. EFFECTS OF ETHANOL ON AOT/N-HEPTANE REVERSE MICELLE SYSTEMS

Student: Robyn Elizabeth Ridley | Professor: Olivia A. Graeve

31. DIFFUSION STUDIES OF STRUCTURALLY AMORPHOUS METAL FOILS USING MOLECULAR DYNAMICS SIMULATION

Student: Jordan Alexander Campbell | Professor: Olivia A. Graeve

32. SYNTHESIS AND LUMINESCENT CHARACTERIZATION OF CORE-SHELL NANOPHOSPHORS

Students: Jungmin Ha, Jinkyu Han, Chenhui Zhou, Ekaterina Novitskaya, Gustavo Hirata | Professors: Joanna M. McKittrick, Olivia A. Graeve

33. IMPACT RESISTANT BIOLOGICAL MATERIALS AND BIOINSPIRED DESIGNS

Student: Wei Huang | Professor: Joanna M. McKittrick

34. BIODEGRADABLE SPONGY BONE IMPLANTS: STRENGTH THROUGH BIOINSPIRATION

Student: Michael Brian Frank | Professor: Joanna M. McKittrick

35. COMPARISON OF DEPROTEINIZATION METHODS FOR PORCINE FEMUR CORTICAL BONE

Student: Frances Yenan Su | Professor: Joanna M. McKittrick

36. STACKED GRAPHENE/NANOSTRUCTURE AS PLASMONIC METAMATERIALS

Student: Jiaying Wang | Professor: Oscar Vazquez Mena

CENTER FOR EXTREME EVENTS RESEARCH

37. COUPLED THERMAL-MECHANICAL-CONTACT ANALYSIS OF HOT CRACKING IN LASER WELDED LAP JOINTS

Students: Qizhi He, Haoyan Wei | Professor: Jiun-Shyan Chen

38. RECENT ADVANCES IN STABILIZED AND NODALLY INTEGRATED MESHFREE MODELING OF EXTREME EVENTS

Students: Frank Nathan Beckwith, Marco Pasetto, Mathew Reynolds, Tsung-Hui Huang | Professor: Jiun-Shyan Chen

39. REDUCED ORDER MODELING OF FRACTURE

Students: Jonghyuk Baek, Qizhi He | Professor: Jiun-Shyan Chen

40. NEW MESHFREE SIMULATION TECHNIQUES FOR MODELING PENETRATION AND BLAST LOADING

Students: Marco Pasetto, Frank Beckwith, Tsung-Hui Huang, Mathew Reynolds | Professor: Jiun-Shyan Chen

41. MESHFREE HYDRO-MECHANICAL MODELING OF FRACKING PROCESSES IN FLUID-SATURATED POROUS MEDIA

Student: Haoyan Wei | Professor: Jiun-Shyan Chen

42. NON-CONTACT TOMOGRAPHY FOR STRUCTURAL MONITORING AND BIOLOGICAL APPLICATIONS

Student: Sumit Gupta | Professor: Kenneth J. Loh

43. ENGINEERING SCALABLE MULTIFUNCTIONAL AND STIMULI-RESPONSIVE NANOCOMPOSITES

Students: Bo Mi Lee, Long Wang, Sumit Gupta | Professor: Kenneth J. Loh

44. NANOMATERIAL-BASED SENSING OF DISTRIBUTED DAMAGE IN ENGINEERED AND BIOLOGICAL SYSTEMS

Student: Long Wang | Professor: Kenneth J. Loh

SUSTAINABLE POWER AND ENERGY CENTER

45. QUANTIFYING SODIUM MIGRATION IN SILICON NITRIDE FOR EXTENDED SOLAR MODULE LIFETIME

Student: Jonathan David Scharf | Professor: David Fenning

46. NANOSCALE HALIDE SEGREGATION AND CHARGE COLLECTION WITHIN MIXED-HALIDE PEROVSKITE SOLAR CELLS

Student: Yanqi Luo | Professor: David Fenning

47. REVISITING THE CONVERSION REACTION VOLTAGE AND THE REVERSIBILITY OF THE CUF2 ELECTRODE IN LI-ION BATTERIES

Student: Joon Kyo Seo | Professors: Ying S. Meng, Ping Liu, Olivia A. Graeve, Jian Luo, Kesong Yang

48. LIQUEFIED GAS ELECTROLYTES FOR LOW TEMPERATURE ENERGY STORAGE

Students: Yangyuchen Yang, Joon Kyo Seo | Professor: Ying S. Meng

49. OPTIMAL DISTRIBUTED NONLINEAR BATTERY CONTROL

Students: Michael Henry Ostertag, Sinan Akyurek | Professor: Tajana S. Rosing

50. THE SIZE-DEPENDENT EDGE AND ODD-EVEN EFFECT ON SINGLE-LAYERED MOS2 NANOSHEETS WITH AND WITHOUT SULFUR VACANCIES

Student: Paul Hyunggyu Joo | Professor: Kesong Yang

51. ENHANCING SPONTANEOUS MOLECULAR FERROELECTRICITY IN MAPBI3 BY STRAIN/DOPING-INDUCED CELL DEFORMATION: A FIRST-PRINCIPLES STUDY

Student: Yuheng Li | Professor: Kesong Yang

BIOENGINEERING

52. IMPROVING REPRODUCTIVE SUCCESS: MANIPULATING SPERMATOZOA MOTILITY WITH RED LIGHT

Student: Kay Wen Chow | Professor: Michael Berns

53. PROBING MECHANOBIOLOGY WITH LASER-INDUCED SHOCKWAVES

Students: Christopher Carmona, DarylPreece, Linda Shi, Veronica Gomez-Godinez | Professor: Michael Berns

54. CARDIOVASCULAR RESPONSE TO RESUSCITATION WITH ANAEROBICALLY STORED BLOOD

Student: Alexander Thomas Williams | Professor: Pedro J. Cabrales Arevalo

55. ASSIMILATION OF BIOPHYSICAL NEURONAL DYNAMICS IN NEUROMORPHIC VLSI

Students: Jun Wang, Abraham Akinin, Daniel Breen | Professor: Gert Cauwenberghs

56. EEG CHANNEL INTERPOLATION USING ELLIPSOID GEODESIC LENGTH

Student: Hristos Courellis | Professor: Gert Cauwenberghs

57. PIPELINED PARALLEL CONTRASTIVE DIVERGENCE FOR CONTINUOUS GENERATIVE MODEL LEARNING

Students: Bruno Umbria Pedroni, Sadique Sheik | Professor: Gert Cauwenberghs

58. ENZYME-TARGETED NANOPARTICLES FOR DELIVERY TO ISCHEMIC MUSCLE

Student: Jessica Leigh Ungerleider | Professor: Karen L. Christman

59. HUMANIZED MOUSE MODEL FOR ASSESSING THE HUMAN IMMUNE RESPONSE TO XENOGENEIC AND ALLOGENEIC DECELLULARIZED BIOMATERIALS

Student: Raymond M Wang | Professor: Karen L. Christman

60. UTILIZING INJECTABLE DECELLULARIZED EXTRACELLULAR MATRIX HYDROGELS FOR THE SLOW RELEASE OF MICRORNAS

Student: Melissa Jenee Hernandez | Professor: Karen L. Christman

61. 3D COLLAGEN ARCHITECTURE INDUCES VASCULAR MIMICRY IN CANCER CELLS THROUGH A CONSERVED MIGRATORY AND TRANSCRIPTIONAL RESPONSE

Student: Daniel Ortiz Velez | Professor: Stephanie I. Fraley

62. DIGITAL HIGH RESOLUTION MELT FOR FIRST PASS SCREENING FOR SEPSIS

Students: Mridu Bhashini Sinha, Hannah Mack, Julietta Jupe Professors: Stephanie I. Fraley, Todd P. Coleman

63. EXTENDED PHOTONIC TRANSFER IN DNA NANOSTRUCTURES Student: Alaleh Golkar Narenji | Professor: Michael J. Heller

64. RAPID ELECTROPHORETIC METHOD FOR THE DETECTION OF ENZYME ACTIVITIES IN UNPROCESSED BLOOD

Student: Elaine Alexandra Skowronski | Professor: Michael J. Heller

65. TOWARDS PLUG-AND-PLAY BRAIN-STATE DECODING WITH LARGE-SCALE DATA

Student: Chunshu Wei | Professors: Tzyy-Ping Jung, Gert Cauwenberghs

66. A NOVEL MATHEMATICAL MODEL TO SIMULATE CARDIAC BIOMECHANICS

Student: Jessica Caitlin Leon | Professor: Andrew D. Mc Culloch

67. CARDIAC-DISEASES-BASED GENE REGULATORY NETWORK CONSTRUCTION AND APPLICATION

Student: Shulin Cao | Professor: Andrew D. Mc Culloch

68. SYNOVIAL FLUID HYALURONAN FLUCTUATION IN POST-TRAUMATIC OSTEOARTHRITIS: DEPENDENCE ON THE DYNAMIC BALANCE BETWEEN BIOSYNTHESIS, LOSS, AND FLUID FLUX

Student: Aimee Rose Raleigh | Professor: Robert L. Sah

69. AUTODIGESTION IN HEMORRHAGIC SHOCK: A TWO-STEP PROCESS

Student: Asimina S Courelli | Professor: Geert W. Schmid-Schoenbein

70. MODULAR INTEGRATED ORGAN-ON-A-CHIP SYSTEMS FOR CANCER DRUG TESTING

Student: Han Liang Lim | Professor: Shyni Varghese

71. UBISTROKE: A NEUROBEHAVIORAL EVALUATION SYSTEM USING 3D DEPTH TRACKING AND COMPUTER VISION

Student: Vishwajith Ramesh | Professors: Nadir Weibel, Gert Cauwenberghs

COMPUTER SCIENCE & ENGINEERING

72. TOUCAN: A TRANSLATOR FOR COMMUNICATION TOLERANT MPI APPLICATIONS

Student: Sergio Miguel Martin | Professor: Scott B. Baden

73. AMPLICONARCHITECT: RECONSTRUCTION OF COMPLEX REARRANGEMENTS OF TUMOR GENE AMPLIFICATION

Student: Viraj Balkrishna Deshpande | Professor: Vineet Bafna

74. SHARING AND COMMUNITY CURATION OF MASS SPECTROMETRY DATA WITH GLOBAL NATURAL PRODUCTS SOCIAL MOLECULAR NETWORKING

Student: Mingxun Wang | Professor: Nuno F. Bandeira

75. LEVERAGING CONTEXT TO IMPROVE MACHINE LEARNING CLASSIFICATIONS OF MARINE ZOOPLANKTON

Student: Jeffrey Scott Ellen | Professors: Charles Elkan, Lawrence K. Saul, Zhuowen Tu, Nuno M. Vasconcelos, Mark Ohman

76. IDENTIFYING AT-RISK STUDENTS BEFORE IT IS LATE

Student: Soohyun Nam Liao | Professors: William G. Griswold, Leonard E. Porter

77. LETS GO(LANG) REAL-TIME

Student: Ashish Kashinath | Professor: Rajesh Gupta

78. PIBLE: BATTERY-FREE MOTE FOR PERPETUAL INDOOR APPLICATIONS

Student: Francesco Fraternali | Professor: Rajesh Gupta

79. RESISTIVE BLOOM FILTERS: FROM APPROXIMATE MEMBERSHIP TO APPROXIMATE COMPUTING WITH BOUNDED ERRORS

Student: Vahideh Akhlaghi | Professor: Rajesh Gupta

80. THROUGHPUT OPTIMIZATION FOR HIGH-LEVEL SYNTHESIS USING RESOURCE-AWARE REGULARITY EXTRACTION

Student: Atieh Lotfi | Professor: Rajesh Gupta

81. DETERMINING BURNING POTENTIALS FOR WILDFIRES

Student: Sumedha Khatter | Professors: Trey Ideker, Ilkay Altintas

82. IMPROVED PRIM-DIJKSTRA TRADEOFFS FOR HIGH PERFORMANCE VLSI ROUTING

Students: Sriram Venkatesh, Sriram Venkatesh | Professor: Andrew B. Kahng

83. A GROUND TRUTH 3D VIDEO DATA SET FOR AUGMENTED REALITY ROBOTIC MIS ALGORITHMS

Student: Michael Joseph Barrow | Professor: Ryan Kastner

84. BACKGROUND SUBTRACTION FOR NEUROMORPHIC IMAGE SENSORS

Student: Alireza Khodamoradi | Professor: Ryan Kastner

85. HIGHER ORDER FUNCTIONS FOR INTRODUCTORY HARDWARE DEVELOPMENT

Student: Dustin Alexander Richmond | Professor: Ryan Kastner

86. INTELLIGENT DESIGN SPACE EXPLORATION OF HARDWARE-ACCELERATED SLAM ALGORITHMS

Students: Quentin Kevin Gautier, Alric Althoff | Professor: Ryan Kastner

87. INFORMATION FLOW TRACKING FOR PROVABLY SECURE HARDWARE DESIGN

Student: Armaiti Ardeshiricham | Professor: Ryan Kastner

88. LEVERAGING THE OCEAN'S AMBIENT SOUNDSCAPE TO LOCALIZE SUBSEA DRIFTERS

Student: Perry W Naughton | Professor: Ryan Kastner

89. SURPRISE: A PROBABILISTIC METRIC OF HARDWARE DESIGN SPACE COMPLEXITY

Student: Alric Joseph Althoff | Professor: Ryan Kastner

90. CREATING SCIENTISTS WITH ONLINE LEARNING

Students: Vineet Pandey, Chen Yang | Professor: Scott R. Klemmer

91. PROBABILITIES TO BALANCES: AN ALTERNATIVE APPROACH

Student: James Tong Morton | Professor: Rob Knight

92. VISUALLY-AWARE FASHION RECOMMENDATION AND DESIGN WITH GENERATIVE IMAGE MODELS

Student: Wangcheng Kang | Professor: Julian J. McAuley

93. MULTIPLE SEQUENCE ALIGNMENTS FOR ULTRA-LARGE REFERENCE 16S DATASETS: COMBINING A DIVIDE-AND-CONQUER FRAMEWORK WITH RNA STRUCTURAL MODELS

Student: Uyen To Mai | Professor: Siavash Mirarab (Mir Arabbaygi)

94. A COMPUTATIONAL MODELING APPROACH OF USER BEHAVIOR FOR SWARM CONTROL APPLICATIONS

Student: Dhanesh Girish Pradhan | Professor: Tajana S. Rosing

95. A CONTEXT-DRIVEN IOT MIDDLEWARE ARCHITECTURE

Student: Bekhzod Soliev | Professor: Tajana S. Rosing

96. AUTONOMOUS DETECTION AND MAPPING OF ANOMALOUS AIR QUALITY EVENTS

Student: Kanza Khan | Professor: Tajana S. Rosing

97. APPROXIMATION FOR ENERGY EFFICIENT COMPUTING

Student: Mohsen Imani | Professor: Tajana S. Rosing

98. IN-MEMORY PROCESSING FOR DATA INTENSIVE APPLICATIONS Student: Saransh Gupta | Professor: Tajana S. Rosing

99. OPTIMAL PACKET AGGREGATION IN WIRELESS NETWORKS

Students: Mihir Rajan Patankar, Alper SinanAkyurek Professor: Tajana S. Rosing

100. PHASE-BASED POWER PREDICTION FOR HETEROGENOUS COMPUTING ECOSYSTEMS

Student: Yeseong Kim | Professor: Tajana S. Rosing

101. RESISTIVE CAM ACCELERATION FOR TUNABLE APPROXIMATE COMPUTING

Student: Daniel Nikolai Peroni | Professor: Tajana S. Rosing

102. STOP THAT JOIN! DISCARDING DIMENSION TABLES WHEN LEARNING HIGH CAPACITY CLASSIFIERS

Student: Vraj Paragbhai Shah | Professor: Arun Kumar

103. GADGETRON: DECLARATIVE DESIGN OF MECHATRONIC AND CYBERPHYSICAL DEVICES

Student: Devon James Merrill | Professor: Steven J. Swanson

104. MIXED REALITY APPLICATIONS IN SURGICAL ENVIRONMENTS

Student: Danilo Gasques Rodrigues | Professor: Nadir Weibel

105. RE-IMAGINING EMBODIED MULTIMODAL MEANING MAKING THROUGH COMPUTATIONAL ETHNOGRAPHY

Student: Steven Robert Rick | Professor: Nadir Weibel

ELECTRICAL & COMPUTER ENGINEERING

106. MIMO 2PJ/MAC 14-B 8X8 LINEAR TRANSFORM MIXED-SIGNAL SPATIAL FILTER IN 65NM CMOS WITH 84 DB INTERFERENCE SUPPRESSION

Students: Siddharth Joshi, Chul Kim, Sohmyung Ha | Professor: Gert Cauwenberghs

107. IMPROVING MOTOR IMAGERY BRAIN COMPUTER INTERFACES WITH USER RESPONSE TO FEEDBACK

Student: Mahta Mousavi | Professor: Virginia De Sa

108. ELECTRO-OPTRICAL MECHANICALLY FLEXIBLE (EO-FLEX) NANOPROBES

Students: Spencer Patrick Ward, Conor Riley | Professors: Sadik C. Esener, Donald J. Sirbuly

109. HYBRID MULTIMODE RESONATORS BASED ON GRATING ASSISTED COUNTER-DIRECTIONAL COUPLERS

Student: Jordan Austin Davis | Professor: Y. Shaya Fainman

110. SELF-ORGANIZED SEGREGATION ON THE GRID Student: Hamed Omidvar | Professor: Massimo Franceschetti

111. DEEP LEARNING METHODS FOR ANALYZING NEURAL DATA Student: Fnu Pailla-Teiaswy | Professor: Vikash Gilja

112. PROTEASE-BASED MAGNETIC SENSOR FOR RAPID DETECTION OF CANDIDEMIA

Student: Sonal Jain | Professors: Drew A. Hall, Anthony O'Donoghue

113. OPTIMUM LOGIC SYNTHESIS CONSTRAINTS FOR IC PHYSICAL IMPLEMENTATION

Student: Tushar Shah | Professor: Andrew B. Kahng

114. A PATHFINDING TOOL FOR 3D VLSI TECHNOLOGY AND DESIGN

Student: Ahmed Taha Elthakeb Youssef | Professor: Andrew B. Kahng

115. VERTICAL M1 ROUTING-AWARE DETAILED PLACEMENT FOR CONGESTION AND WIRELENGTH REDUCTION IN SUB-10NM NODES

Students: Lutong Wang, Kwangsoo Han, Hyein Lee | Professor: Andrew B. Kahng

116. SHAPING AND STEERING OF SURFACE LASER BEAM CARRYING ORBITAL ANGULAR MOMENTUM

Student: Babak Bahari | Professor: Boubacar Kante

117. FAST AND ROBUST SPARSE BAYESIAN LEARNING FOR EEG SOURCE IMAGING

Student: Alejandro Ojeda | Professor: Kenneth Kreutz-Delgado

118. A MULTI-MODAL SYSTEM FOR CLOSED-LOOP OPTOGENETICS IN BEHAVING ANIMALS

Students: Xin Liu, Yichen Lu, Ege Iseri, Sravya Alluri | Professor: Duygu Kuzum

119. FLEXIBLE POROUS GRAPHENE ELECTRODES WITH LOW IMPEDANCE AND HIGH CHARGE INJECTION CAPACITY FOR CORTICAL SENSING AND STIMULATION

Student: Yichen Lu | Professor: Duygu Kuzum

120. TRAINING AND OPERATION OF THE SPIKING NEURON NETWORK BASED ON CBRAM

Student: Yuhan Shi, Leon Nguyen | Professor: Duygu Kuzum

121. A 4.5 NW WAKE-UP RADIO WITH -69DBM SENSITIVITY

Students: Po-Han Wang, Haowei Jiang | Professors: Patrick P. Mercier, Drew A. Hall, Gabriel M. Rebeiz, Young-Han Kim

122. CONTINUOUS SELF-CALIBRATING EYE GAZE TRACKING FOR VIRTUAL REALITY SYSTEMS

Student: Subarna Tripathi | Professors: Truong Nguyen, Serge J. Belongie

123. VIEW SYNTHESIS WITH HIERARCHICAL CLUSTERING BASED OCCLUSION FILLING

Student: Ji Dai | Professor: Truong Nguyen

124. EMERGING VERTICAL NANOWIREFET TECHNOLOGY FOR ENERGY EFFICIENT COMPUTING

Student: Joonseop Sim | Professor: Tajana S. Rosing

125. FIELD ENHANCEMENT IN PLASMONIC NANOSTRUCTURES

Student: Shiva Piltan | Professor: Daniel F. Sievenpiper

126. SELF-CATALYZED CORE-SHELL GAAS/GANAS NANOWIRES GROWN ON PATTERNED SI (111) BY GAS-SOURCE MOLECULAR BEAM EPITAXY

Student: Rui La | Professor: Charles W. Tu

127. LINEAR NETWORK CODING OVER RINGS

Student: Joseph Michael Connelly | Professor: Kenneth A. Zeger

MECHANICAL & AEROSPACE ENGINEERING

128. CHARACTERIZING NON LINEAR EFFECTS IN LOW COST MOTORS Student: Daniel Jiaji Yang | Professor: Thomas R. Bewley

129. DERIVATIVE-FREE GLOBAL OPTIMIZATION METHOD WITH INEXACT FUNCTION EVALUATIONS

Student: Shahrouz Alimohammadi, Muhan Zhao, Pooriya Beyhaghi Professor: Thomas R. Bewley

130. DYNAMIC MODEL AND CONTROL OF A MICRO BALL-BALANCING ROBOT WITH HIGH YAW RATE

Student: Eric Nauli Sihite | Professor: Thomas R. Bewley

131. TRAJECTORY PLANNING FOR MAXIMIZING THE PROBABILITY OF FINDING AN OBJECT INSIDE A BOUND DOMAIN

Students: Abhishek Subramanian, Shahrouz Alimohammadi Professor: Thomas R. Bewley

132. CONTINUOUS 3D PRINTING OF BIOGENIC POLYURETHANES

Student: Pengrui Wang | Professor: Shaochen Chen

133. PMU-BASED MICROGRID POWER CONTROL OVER THE INTERNET WITH REAL-TIME GRID SIMULATION

Student: Amir Valibeygi | Professor: Raymond A. De Callafon

134. NON-INVASIVE QUANTITATIVE METHOD FOR MEASURING REGIONAL CARDIAC FUNCTION.

Student: Ashish Manohar | Professor: Juan Carlos Del Alamo

135. THE CIRCULATION OF THE CEREBROSPINAL FLUID (CSF) IN THE SPINAL CANAL

Student: Ernesto Criado Hidalgo | Professors: Juan Carlos Del Alamo, Juan C. Lasheras

136. EXPANDING CARDIOPULMONARY SHUNT Student: Edward Aminov | Professor: James R. Friend

137. NEUROTENDO: NINTENDO FOR NEUROINTERVENTIONISTS Student: Gopesh Chaitanyaku Tilvawala | Professor: James R. Friend

138. CHARACTERIZING SOLAR THERMAL ENERGY STORAGE SYSTEMS

Student: Andrew Zigang Zhao | Professor: Javier E. Garay

139. PREPARATION OF RARE EARTH STABILIZED NANOCRYSTALLINE ZIRCONIA WITH TUNABLE OPTICAL/MECHANICALPROPERTIES

Student: Gottlieb Hangula Uahengo | Professor: Javier E. Garay

140. SYNTHESIS AND PROCESSING OF NANOCRYSTALLINE ALUMINUM NITRIDE FOR HIGH POWERED LASER APPLICATIONS

Student: Matthew Adalberto Duarte | Professor: Javier E. Garay

141. POLYMER-BASED RETROGRADE NANO-TRACERS AS TOOLS FOR NEUROANATOMY

Student: Nanzhi Zang | Professor: Nathan Gianneschi

142. EXPERIMENTAL DEMONSTRATION OF A SUB-SCALE HYDROKINETIC TURBINE

Student: Spencer Riley Ellis | Professor: John B. Kosmatka

143. MODAL MODELING VIA FIBER OPTIC STRAIN SENSING FOR APPLICATIONS IN STRUCTURAL HEALTH MONITORING

Student: Benjamin Levi Martins | Professor: John B. Kosmatka

144. BLOBS AND DRIFT WAVE DYNAMICS

Student: Yanzeng Zhang | Professor: Sergei Krasheninnikov

145. ADAPTIVE OUTPUT FEEDBACK FOR FLOW-INDUCED VIBRATIONS OF A MEMBRANE AT HIGH MACH NUMBERS

Student: Huan Yu | Professor: Miroslav Krstic

146. CONTROL AND ESTIMATION OF THE LIQUID-SOLID INTERFACE IN A PHASE CHANGE MATERIAL

Student: Shumon Koga | Professor: Miroslav Krstic

147. STABILIZATION OF AN UNDERACTUATED TRANSPORT-WAVE PDE SYSTEM

Student: Stephen Chen | Professor: Miroslav Krstic

148. TRAJECTORY OPTIMIZATION OF 7-DOF BAXTER ROBOT'S ARM

Student: Mostafa Bagheri | Professors: Miroslav Krstic, Peiman Naseradinmousavi

149. HIGHLY SPECIFIC SNP DETECTION USING GRAPHENE ELECTRONICS AND DNA STRAND DISPLACEMENT

Student: Michael Taeyoung Hwang | Professor: Ratneshwar Lal

150. AVOIDING BRAIN INJURY: A STRUCTURAL ROLE OF THE FRONTAL OVERHANG ON THE SKULL BONE OF WOODPECKERS

Student: Jae-young Jung | Professors: Joanna M. McKittrick, Marc A. Meyers

151. MICROSTRUCTURAL ORIGINS OF THE DYNAMIC BEHAVIOR OF WOOD

Student: Albert Keisuke Matsushita | Professor: Joanna M. McKittrick

152. REINFORCEMENTS IN AVIAN WING BONES: EXPERIMENTS, ANALYSIS, AND MODELING

Students: Sean Nolan Garner, Keisuke Matsushita | Professor: Joanna M. McKittrick

153. A FUNCTIONAL NATURAL ADHESIVE: THE FEATHER VANE AND INSPIRED DESIGNS

Student: Tarah Naoe Sullivan | Professor: Marc A. Meyers

154. DISCOVERING THE PROTECTION MECHANISM FOR THE 'LIVING FOSSIL' COELACANTH

Student: Haocheng Quan | Professor: Marc A. Meyers

155. NON-EQUILIBRIUM SIMULATIONS OF SHOCK-INDUCED HORIZONTAL DEFECTS AND AMORPHIZATION IN 4H SILICON CARBIDE

Student: Rachel Marie Flanagan | Professor: Marc A. Meyers

156. ON THE PRESSURE INDUCED AMORPHIZATION AND NANOCRYSTALLIZATION OF SEMICONDUCTING MATERIALS AND ITS POTENTIAL APPLICATIONS

Student: Shiteng Zhao | Professor: Marc A. Meyers

157. TRI-DIMENSIONAL PRINTING AS AN ADVANCED TECHNIQUE IN MANUFACTURING BIOINSPIRED MATERIALS

Student: Audrey Josephina Velasco-Hogan | Professor: Marc A. Meyers

158. VISCOELASTIC RESPONSE OF PIG SKIN UNDER TENSION - A MACROSCOPIC APPROACH USING IMAGE PROCESSING TECHNIQUES

Student: Andrei Pissarenko | Professor: Marc A. Meyers

159. EFFECT OF ELECTRIC CURRENT ON DENSIFICATION MECHANISM OF ZIRCONIUM NITRIDECONSOLIDATED BY SPARK PLASMA SINTERING

Student: Geuntak Lee | Professors: Eugene Olevsky, Joanna M. McKittrick

160. DESIGN PRINCIPLES OF PLEIOTROPIC G-PROTEIN SIGNALING THROUGH GEMS

Student: Michael C Getz | Professor: Padmini Rangamani

161. RADIAL FORCES IN MEMBRANE NECKING

Students: Ritvik Vasan, Haleh Alimohmadi | Professor: Padmini Rangamani

162. TWEAKING THE IMMUNE SYSTEM: TARGETED FUSOGENIC NANOPARTICLES FOR IMMUNOGENE THERAPY AGAINST BACTERIAL INFECTION

Student: Byungji Kim | Professor: Michael Sailor

163. FLAMES... OUT OF THIS WORLD

Student: Luca Carmignani | Professor: Kalyanasundaram Seshadri

164. A SURFACE ENHANCED RAMAN SPECTROSCOPY INVESTIGATION OF HEAT ASSISTED MAGNETIC RECORDING

Student: Benjamin Ying-Xiu Suen | Professor: Frank E. Talke

165. DEVELOPMENT OF AN INTRAOCULAR PRESSURE MEASUREMENT SYSTEM

Students: Alex Minh Giang Phan, Phuong Truong, Alexander Kief Professor: Frank E. Talke

166. ESOPHAGEAL DEFLECTION DEVICE FOR USE DURING TREATMENT OF ATRIAL FIBRILLATION

Student: Karcher William Morris | Professor: Frank E. Talke

167. INVESTIGATION OF CONTAMINATION AT THE HEAD-DISK INTERFACE IN TODAY'S HARD DISK DRIVES

Student: Young Woo Seo | Professor: Frank E. Talke

168. 3D PRINTED SOFT ACTUATORS FOR A LEGGED ROBOT CAPABLE OF NAVIGATING UNSTRUCTURED TERRAIN

Student: Dylan T. Drotman | Professor: Michael T. Tolley

169. A SOFT ROBOTIC GRIPPER CAPABLE OF IN-HAND MANIPULATION AUGMENTED WITH SOFT SENSOR SKIN FOR TACTILE SENSING

Student: Benjamin Shih | Professor: Michael T. Tolley, Henrik I. Christensen

170. SOFT ROBOTIC GLOVE FOR HAPTIC FEEDBACK IN VIRTUAL ENVIRONMENTS

Students: Saurabh Subhash Jadhav, Vikas Kannanda, Bocheng Kang Professor: Michael T. Tolley

171. A STUDY OF A NEW RECOMBINATION PROCESS OF D2 PLASMA MEDIATED BY ND3 MOLECULES

Student: Shota Abe | Professor: George R. Tynan

172. CHARACTERIZATION OF MICROSTRUCTURE AND MATERIAL PROPERTIES OF DIRECT LASER DEPOSITED NI-ALLOY 625

Students: Paresh Mukhedkar, KevinKaufmann, Tyler Harrington Professor: Kenneth S. Vecchio

173. IRON-ALUMINUM METALLIC-INTERMETALLIC LAMINATE (MIL) COMPOSITES

Students: Haoren Wang, Xiao Liu | Professor: Kenneth S. Vecchio

174. PHASE STABILITY DEPENDENCE OF DEFORMTION MICROSTUCTURE AND MECHNICAL PROPERTIES IN TI-NB GUM METAL

Student: Sumin Shin | Professor: Kenneth S. Vecchio

NANOENGINEERING

175. CONTINUOUS OPTICAL PRINTING OF CELL-LADEN CONSTRUCTS WITHIN MICROFLUIDIC ARCHITECTURES

Student: Justin David Liu | Professor: Shaochen Chen

176. A NOVEL DIELECTROPHORESIS PLATFORM FOR THE ISOLATION OF EXTRACELLULAR VESICLES

Student: Lennart Langouche | Professors: Sadik C. Esener, Michael J. Heller

177. RAPID SAMPLE TO ANSWER DIAGNOSTICS FOR TRAUMATIC BRAIN INJURY

Student: Benjamin Gabriel Sarno | Professor: Michael J. Heller

178. RAPID ON-CHIP ISOLATION AND DETECTION OF PANCREATIC CANCER EXOSOME BIOMARKERS

Student: Augustine Chidi Obirieze | Professors: Michael J. Heller, Sadik C. Esener

179. REAL TIME ULTRASOUND-BASED MEASUREMENTS OF CLOTTING TIME AND IMPLANTABLE SENSOR FOR THERAPEUTIC DRUG MONITORING OF HEPARIN

Student: Junxin Wang | Professor: Jesse V. Jokerst

180. THE CHARACTERIZATION OF NOVEL, AFFORDABLE AND COMPACT LED-BASED PHOTOACOUSTIC IMAGING SYSTEM TO FACILITATE MOLECULAR IMAGING

Student: Ali Hariri | Professor: Jesse V. Jokerst

181. THE FUTURE OF IMAGING

Student: Jeanne Elizabeth Lemaster | Professor: Jesse V. Jokerst

182. STRUCTURE AND MECHANICAL BEHAVIOR OF HUMAN HAIR

Student: Yang Yu | Professor: Marc A. Meyers

183. DESIGN AND APPLICATION OF PIEZOELECTRIC COMPOSITE MATERIALS AND DEVICES

Student: James Lance Middlebrook | Professor: Donald J. Sirbuly

184. CHARACTERIZATION OF BSA ADSORPTION ON HETEROGENEOUSLY PEGYLATED AG NPS

Student: Madhura Som | Professor: Andrea R. Tao

185. PLASMON ENHANCED NONLINEAR OPTICAL NANO DEVICE AND MATERIALS

Student: Yuan Zeng | Professor: Andrea R. Tao

186. SUBMERSIBLE SOFT ROBOTICS DRIVEN BY FLUID ELECTRODEDIELECTRIC ELASTOMER ACTUATORS Student: Caleb Michael Christianson | Professor: Michael T. Tolley

187. DEVELOPMENT OF FE-NI-CO-AL-BASED SUPERELASTIC ALLOYS

Student: Cheng Zhang | Professor: Kenneth S. Vecchio

188. DETERMINATION OF GEOMETRICALLY NECESSARY DISLOCATIONS IN LARGE SHEAR STRAIN LOCALIZATION IN METALS

Student: Chaoyi Zhu | Professor: Kenneth S. Vecchio

189. FABRICATION OF HIGH ENTROPY CERAMICS: NITRIDES AND CARBONITRIDES

Student: Olivia Faye Dippo | Professor: Kenneth S. Vecchio

190. MODULATING CRYSTALLINITY OF A TI-ZR-BASED BULK METALLIC GLASS MATRIX COMPOSITE

Student: Kevin Richard Kaufmann | Professor: Kenneth S. Vecchio

191. MODELING AND FABRICATION OF A NEW CLASS OF HIGH-ENTROPY REFRACTORY INTERSTITIAL CARBIDES

Student: Tyler James Harrington | Professor: Kenneth S. Vecchio

192. MOLYBDENUM DISULFIDE-BASED TUBULAR MICROENGINES: TOWARD BIOMEDICAL APPLICATIONS

Students: Emil Karshalev, Isaac Campso, Roxanne Castillo Professor: Joseph Wang

193. NEW ADVANCES IN ACOUSTICALLY PROPELLED NANOMOTORS Student: Fernando Soto | Professor: Joseph Wang

194. FIRST-PRINCIPLES PREDICTION OF TWO-DIMENSIONAL ELECTRON GAS DRIVEN BY POLARIZATION DISCONTINUITY IN NONPOLAR/NONPOLAR AHFO3/SRTIO3 (A=CA, SR, AND BA) HETEROSTRUCTURES

Student: Jianli Cheng | Professor: Kesong Yang

195. POLARIZATION EFFECTS ON THE INTERFACIAL CONDUCTIVITY IN THE LAO/STO HETEROSTRUCTURE: FIRST-PRINCIPLES STUDY

Student: Maziar Alexander Behtash | Professor: Kesong Yang

196. ERYTHROCYTE-PLATELET HYBRID MEMBRANE COATING FOR ENHANCED NANOPARTICLE FUNCTIONALIZATION

Student: Diana Dorothy Nader Dehaini | Professor: Liangfang Zhang

197. RED BLOOD CELL MEMBRANE-COATED NANOGEL FOR COMBINATORIAL ANTIVIRULENCE AND RESPONSIVE ANTIMICROBIAL DELIVERY AGAINST MRSA INFECTION

Student: Yue Zhang | Professor: Liangfang Zhang

STRUCTURAL ENGINEERING

198. ISOGEOMETRIC ANALYSIS FOR THE PREDICTION OF DAMAGE GROWTH IN COMPOSITE LAMINATES

Student: Marco Simone Pigazzini | Professor: Yuri Bazilevs

199. FLAPPING UNMANNED AERIAL SYSTEMS: NONLINEAR AEROELASTIC ANALYSIS

Student: Enrico Santarpia | Professors: Luciano Demasi, Jiun-Shyan Chen

200. HIGH ENERGY, WIDE AREA BLUNT IMPACTS IN CARBON FIBER REINFORCED AEROSPACE STRUCTURES

Student: Chaiane Wiggers De Souza | Professor: Hyonny Kim

201. FAST LEVEL SET TOPOLOGY OPTIMIZATION USING A HIERARCHICAL DATA STRUCTURE

Student: Carolina Miranda Jauregui | Professor: Hyunsun A. Kim

202. VIBRATION DAMPING OF COMPOSITES WITH CARBON NANONTUBES

Student: Andrew Ming Fann | Professor: John B. Kosmatka

203. MEAN-STRAIN QUADRATIC 10-NODE TETRAHEDRON WITH QUASI-OPTIMAL ENERGY STABILIZATION FOR NONLINEAR DEFORMATION

Student: Phi Quoc Nguyen | Professor: Petr Krysl

204. HIGH-SPEED NON-CONTACT PASSIVE-ONLY ULTRASONIC INSPECTION OF RAILS FROM DECONVOLUTIONS OF WHEEL-GENERATED NOISE

Students: Albert Yi-Ling Liang, Xuan Zhu, Simone Sternini, Margherita Capriotti | Professor: Francesco Lanza Di Scalea

205. NON-DESTRUCTIVE EVALUATION METHOD FOR DETECTING MAJOR DAMAGE IN INTERNAL COMPOSITES STRUCTURAL COMPONENTS

Students: Margherita Capriotti, Eric Kim | Professors: Francesco Lanza Di Scalea, Hyonny Kim

206. PUSHING THE LIMITS OF ULTRASONIC IMAGING OF SOLIDS BY WAVE MODE BEAMFORMING AND GPU PROCESSING

Students: Simone Sternini, Albert Liang | Professor: Francesco Lanza Di Scalea

207. ESTIMATE OF THE POTENTIAL OF USE OF A MUNICIPAL SOLID WASTE LANDFILL AS A SOURCE OF THERMAL ENERGY

Student: Leticia Maria Nocko | Professor: John S. McCartney

208. EARTHQUAKE PERFORMANCE OF MECHANICALLY STABILIZED EARTH BRIDGE ABUTMENTS

Student: Yewei Zheng | Professors: John S. McCartney, Pui-Shum Shing

209. THERMAL IMPROVEMENT OF OFFSHORE FOUNDATION RESPONSE IN SOFT CLAYS

Student: Ismaail Ghaaowd | Professor: John S. McCartney

210. CYCLIC PERFORMANCE CHARACTERIZATION OF LARGE DIAMETER REINFORCING STEEL BARS AND MECHANICAL COUPLERS

Student: David Elias Duck Rodriguez | Professor: Jose I. Restrepo

211. COLLAPSE VULNERABILITY OF REINFORCED MASONRY STRUCTURES UNDER SEISMIC LOADING

Student: Andreas Koutras | Professor: Pui-Shum Shing

212. NONLINEAR MODELING OF REINFORCED MASONRY STRUCTURES Student: Jianyu Cheng | Professor: Pui-Shum Shing

213. RECONSTRUCTION OF THE THREE-DIMENSIONAL SHAPE OF SLENDER ROD LIKE STRUCTURE-AN APPLICATION OF COSSERAT BEAM THEORY

Student: Mayank Chadha | Professor: Michael D. Todd

214. REUSE OF ABANDONED OIL AND GAS WELLS FOR GEOTHERMAL ENERGY PRODUCTION

Student: Robert Alexander Caulk | Professor: Ingrid Tomac

215. CLASSIFICATION OF FAILURE MODE AND PLASTIC HINGE FORMATION OF STEEL WIDE-FLANGE BEAM-COLUMNS

Student: Gulen Ozkula | Professor: Chia-Ming Uang

216. EXPERIMENTAL VERIFICATION OF A PROCEDURE FOR SMF CONTINUITY PLATE WELD DESIGN

Student: Adel Mashayekh | Professor: Chia-Ming Uang

DEPARTMENTS AND RESEARCH CENTERS

JACOBS SCHOOL ACADEMIC DEPARTMENTS

Bioengineering Computer Science and Engineering Electrical and Computer Engineering Mechanical and Aerospace Engineering NanoEngineering Structural Engineering

AGILE RESEARCH CENTERS

CaliBaja Center for Resilient Materials and Systems Center for Engineered Natural Intelligence Center for Extreme Events Research Center for Microbiome Innovation Center for Visual Computing Center for Wearable Sensors CHO Systems Biology Center Sustainable Power and Energy Center

AFFILIATED RESEARCH INSTITUTES

Center for Energy Research	CER.
Center for Memory & Recording Research	CMR
Center for Networked Systems	CNS.
Center for Wireless Communications	CWC
Contextual Robotics Institute	Conte
Cymer Center for Control Systems and Dynamics	CCSE
Deep Decarbonization Initiative	Deep
Information Theory & Applications Center	ITA.u
Institute for the Global Entrepreneur	IGE.u
Institute of Engineering in Medicine	IEM.u
Powell Structural Research Labs	Struc
Qualcomm Institute (Calit2 at UC San Diego)	CallT
San Diego Supercomputer Center	www

be.ucsd.edu
cse.ucsd.edu
ece.ucsd.edu
maeweb.ucsd.edu
ne.ucsd.edu
structures.ucsd.edu

resilientmaterials.ucsd.edu
CENI.ucsd.edu
CEER.ucsd.edu
Microbiome.ucsd.edu
VisComp.ucsd.edu
WearableSensors.ucsd.edu
CHO.ucsd.edu
SPEC.ucsd.edu

CER.ucsd.edu
CMRR.ucsd.edu
CNS.ucsd.edu
CWC.ucsd.edu
ContextualRobotics.ucsd.edu
CCSD.ucsd.edu
DeepDecarbon.ucsd.edu
ITA.ucsd.edu
IGE.ucsd.edu
IEM.ucsd.edu
Structures.ucsd.edu
CallT2.net
www.sdsc.edu

JUDGES

Rahul Ahlawat	ASML/CYMER
Steven Auerbach	Leidos
Alejandro Barajas	Envision Engineering
Justin Boggs	Oracle
Aarash Bordbar	Sinopia Biosciences
Laura Cervino	UC San Diego
Greg Chauncey	
Jaime Chen	Kaiser Permanente
Sung Hwan Cho	NanoCellect Biomedical
Ted Clowes	
Patrick Convery	Raytheon
Nolan Davis	Leidos
Silvia De Dea	ASML/CYMER
Jessica DeQuach	Ventrix, Inc.
Nik Devereaux	ViaSat
Raheleh Dilmaghani	
Gary Dorrance	SPAWAR Systems Center Retired
Travis Downing	Southern California Design Co.
Wayne Dunstan	ASML/CYMER
Steven Ehlers	General Atomics
Mallory Embree	Ascus Biosciences
Robert Ferencz	Lawrence Livermore National Laboratory
Piraj Fozoonmayeh	ASML/CYMER
Karl Francis	Illumina
Alex Gantman	Qualcomm
Brett Gardner	NAVAIR
Maryam Gholami	UC San Diego
Matthew Graham	ASML/CYMER
Sarah Guthals	GitHub and We Can
Kathy Hayashi	Qualcomm and IEEE
Matthew Hedayat	STG
Lazaro Herrera	County of San Diego
Leo Holland	General Atomics
David Hutches	UC San Diego Jacobs School of Engineering
Robin Ihnfeldt	General Engineering & Research
Ali Irturk	Cognex Corporation

JUDGES

Rahul Kapadia	ASML/CYMER
George Khoury	ViaSat
Dan Kline	NOVO Engineering, Inc.
Sam Knight	LocationSmart
Michael Krupp	Xfibra Inc.
Senmao Lin	CliniComp, Intl'
Alen Malaki	Cisco
Michael Mamaghani	Media Pouch
Paul Margolin	Booz Allen Hamilton
James (Brett) Marymee	Raytheon
David McElfresh	Oracle
Matthew Minnick	NAVAIR
Sreeparna Mukherjee	Cisco Systems
Daniel Nelson	Flowserve Corporation
Ravi Nemani	Mitchell International
Erez Nir	Mitchell International
Elio Oikawa	Solar Turbines
Rob Peabody	Cubic Mission Solutions
Luis Pineda	Retired Qualcomm
Gustavo Prado	Xenco Medical
William Proffer	Leidos
Josh Rivera	NAVAIR
Malcolm Robertson	Keysight Technologies
Chris Root	NAVAIR
Enrico Ros	Qualcomm
Tim Rueth	UC San Diego
Maurice Sabado	Leidos
Iman Sadeghi	Pinscreen
Jeffrey Sandubrae	UC San Diego
Jennifer Schlenzig	Northrop Grumman
Kevin Schmid	Stevanato Group
G B Singh	Solar Turbines
Gail Slemon	
Garrett Smith	Breathe Capital
Tarun Soni	Northrop Grumman

JUDGES

Mary Sorrell	UC San Diego
Adriane Stebbins	Raytheon
Robert Stone	Northrop Grumman
Eric Takeuchi	Daylight Solutions
Devang Thakkar	InnoTivum
Mayank Tiwari	Qualcomm
Chiang Tom	
William Townsend	General Atomics Aeronautical Systems
Gopi Tummala	Qualcomm
Jerry Tustaniwskyj	Cohu Inc. (Delta Design)
Tom Valine	Salesforce
David Voss	Solar Turbines
Jiwu Wang	Allele Biotech/Scintillon Institute
Eliot Weitz	ViaSat
Jim Wilk	Northrop Grumman
True Xiong	Sony PlayStation
Yohei Yamamuro	Simplexity Product Development
John Yamauchi	ChemoTactics
Michael Yao	Northrop Grumman
Lionel Young	Flowserve Coporation

WE'RE CONNECTING THE WORLD. ARE YOU IN?

Profound Impact

Fearless Innovation

🕂 Limitless Opportunities

Invigorating Campuses

Career opportunities available at intern, new grad, and professional levels.

POSTER SESSION MAP

WEST BALLROOM

ENTRANCE

POSTER NUMBERS

AGILE RESEARCH CENTERS

Center for Wearable Sensors	1-9
Center for Visual Computing	10 – 21
CaliBaja Center for Resilient Materials and Systems	22-36
Center for Extreme Events Research	37-44
Sustainable Power and Energy Center	45 – 51

ACADEMIC DEPARTMENTS

Bioengineering	52 – 71
Computer Science and Engineering	72–105
Electrical and Computer Engineering	106 – 127
Mechanical and Aerospace Engineering	128 – 174
NanoEngineering	175 – 197
Structural Engineering	198 – 216

PRICE CENTER MAP

Poster Session: Level 2 (West Ballroom) Faculty Lightning Talks: Level 4 (the Forum) Networking Reception: Level 2 (East Ballroom) Parking Shuttle: 11 AM – 7 PM

