

RESEARCH EXPO

Thursday April 16, 2015

JACOBS SCHOOL CORPORATE AFFILIATES PROGRAM

Acelio

Amazon.com

AppFolio

Arista Networks

ATA Engineering

BD Biosciences

Bentley Systems

Broadcom Corporation

CISCO

CliniComp

Congatec

Corning

CPC Strategy

Cubic Transportation Systems

Cvmer

Cypress Semiconductor

Facebook

Fuii Electric

General Atomics

General Atomics Aeronautical Systems, Inc.

Google

Greenlee

Hughes Network Systems

Informatica

Innovative Defense Technologies

Integrity Applications Incorporated

Intuit

IQ Analog

IRIS Technology

Kaiser Permanente

Kleinfelder | Simon Wong Engineering

Kvocera America

L-3 Communications

Leidos

Lockheed Martin

LP3

Magma

Microsoft

Mitchell International

Mitek Systems

NAVAIR

Northrop Grumman Aerospace Systems

Northrop Grumman Information Systems

Novo Engineering

Ntrepid

Oracle

Qualcomm

Quartus

Raytheon Integrated Defense Systems

Rincon Research

Salesforce

Samsung

Sandia National Laboratories

Schlumberger

Scientific Research Corporation

SDG&E / Sempra Energy

Skyworks Solutions

Solar Turbines

SONY Computer Entertainment America

SPAWAR

Teradata Corporation

Thermo Fisher Scientific

TrellisWare Technologies

UTC Aerospace Systems

ViaSat

Yahoo

Yelp

Be part of this vital partnership between the Jacobs School of Engineering and its Corporate Affiliates Program

RESEARCH EXPO

Thursday April 16, 2015

PREMIER SPONSORS

PARTNER SPONSORS

Agenda

1:30 PM	REGISTRATION
	Price Center (Level 2 in front of the East Ballroom)
2:00 PM-4:30 PM	POSTER SESSION
	Price Center West Ballroom 210+ Graduate Students display their research results
2:30 PM- 4:30 PM	FACULTY LIGHTNING TALKS
	Price Center Forum (4th Floor)
2:30PM	SIMULATION-BASED DISASTER PREDICTION AND DAMAGE ASSESSMENT Jiun-Shyan (J.S.) Chen Center for Extreme Events Research
3:00 PM	VISUAL COMPUTING: GRAND OPPORTUNITIES Ravi Ramamoorthi Center for Visual Computing
3:30 PM	THE FUTURE OF SUSTAINABLE POWER AND ENERGY Shirley Meng Sustainable Power and Energy Center
4:00 PM	SEAMLESS INTEGRATION OF WEARABLE MEDICAL DEVICES Patrick Mercier Center for Wearable Sensors
4:30 PM-6:00 PM	NETWORKING RECEPTION
	Price Center East Ballroom Network with faculty, students and industry partners

Table of Contents

FACULTY LIGHTNING TALKS	PAGES
	6-9

POSTERS BY AGILE RESEARCH CENTER

	Posters	Pages
Center for Visual Computing	1-10	11
Center for Wearable Sensors	11-18	12
Sustainable Power and Energy Center	19-23	13
Center for Extreme Events Research	24-27	13

POSTERS BY DEPARTMENT

	Posters	Pages
Bioengineering	28-50	14-16
Computer Science and Engineering	51-71	17-19
Electrical and Computer Engineering	72-115	20-23
Mechanical and Aerospace Engineering	116-184	24-30
NanoEngineering	185-202	31-32
Structural Engineering	203-213	33-34
	1	

Departments, Programs and Research Centers	35
Research Expo Poster Judges	36, 38
Notes	40-41
Map — Poster Session	42 - 43
Map — Price Center	back cover

CENTER FOR EXTREME EVENTS RESEARCH

2:30 PM SIMULATION-BASED DISASTER DAMAGE PREDICTION AND DAMAGE ASSESSMENT

Presenter: Jiun-Shyan (J.S.) Chen William Prager Professor, Structural Engineering

Manmade and natural disasters including blasts, fragment impacts, penetration, earthquakes and landslides pose severe threats to our living environment. Disaster damage prediction and mitigation are now timely research topics for safeguarding our society. Computer simulations with robust numerical algorithms are one effective approach for disaster damage prediction and mitigation. I will introduce meshfree-based computation methods for multi-scale, multi-physics simulation of damage initiation, propagation, and total collapse in structures and systems subjected to extreme events. I will also discuss how verification and validation of numerical simulation play an important role in the reliability of disaster damage prediction.

• Posters from the Center for Extreme Events Research are listed on page 13.

ABOUT: CENTER FOR EXTREME EVENTS RESEARCH

The Center for Extreme Events Research (CEER) at UC San Diego specializes in developing state-of-the-art computational and experimental technologies for protection of critical infrastructure and biosystems from extreme hazardous events, and for mitigation of structures and systems after disasters. The center's unique testing facilities, including the blast simulator and impact testing laboratory, will be highlighted along with our advanced computational techniques developed by CEER researchers, including the Reproducing Kernel Particle Method and Isogeometric Analysis.

CEER.UCSD.EDU

CENTER FOR VISUAL COMPUTING

3:00 PM VISUAL COMPUTING: GRAND OPPORTUNITIES

Presenter: Ravi Ramamoorthi

Professor, Computer Science and Engineering

Mobile phones with associated imaging devices are now ubiquitous. Most of human perception, however, is from visually rich content, and the mobile revolution should fundamentally be about visual computing. Indeed, we are seeing a revolution in mobile image sensors from Kinect-style hand-held RGBD cameras, to light field cameras used for 3D and range imaging, to wearable see-through and head-mounted augmented reality displays. In short, visual computing at the interface of computer vision and computer graphics is undergoing a major transformation that impacts our daily lives.

Visual content can increasingly be created in more realistic ways, rivaling real photographs and fulfilling the long-term goal of photorealism in computer graphics. Numerous blockbuster movies featuring computergenerated visual effects that are indistinguishable from reality have had tremendous success. But a key challenge remains: creating these effects in real-time and integrating them with mobile augmented reality systems to extend human perception and enable entirely new tasks.

Another major trend is the coming of age of computer vision, where tasks like scene comprehension and gesture recognition are now becoming commonplace on mobile devices. The confluence of these trends opens up great challenges and opportunities.

• Posters from the Center for Visual Computing are listed on page 11.

ABOUT: CENTER FOR VISUAL COMPUTING

The UC San Diego Center for Visual Computing seeks to develop the fundamental technologies needed to take full advantage of the opportunities, at the intersection of computer vision, graphics, imaging and augmented reality. Center research projects are transforming the way we experience and display visual content and indeed the way we live.

VISCOMP.UCSD.EDU

SUSTAINABLE POWER AND ENERGY CENTER

3:30 PM NEW PERSPECTIVES FOR ENERGY STORAGE MATERIALS

Presenter: Shirley Meng Professor, NanoEngineering

Energy storage in the electrochemical form is attractive because of high efficiency and fast response time. New and improved materials for electrochemical energy storage are urgently needed to make more efficient use of our finite supply of fossil fuels and to enable the effective use of renewable energy sources. In this talk, I will discuss new perspectives for energy storage materials being pursued at our new Sustainable Power and Energy Center. The work includes new-generation lithiumion batteries, new sodium-ion batteries and other battery chemistries with lower costs and longer life cycles. I hope to demonstrate how to combine knowledge-guided synthesis-and-characterization with computational modeling to develop and optimize new higher energy/power density electrode materials for energy storage. With recent advances in characterization tools and computational methods, we are able to map out the structure-properties relations in functional materials for energy storage and conversion, and design and optimize next-generation energy storage technologies.

• Posters from the Sustainable Power and Energy Center are listed on page 13.

ABOUT: SUSTAINABLE POWER AND ENERGY CENTER

The Sustainable Power and Energy Center at UC San Diego develops high performance and low cost materials and devices for energy generation, storage and conversion for electric vehicles, microgrids, photovoltaic panels, wind turbines, wearable power devices and more. UC San Diego's world-renowned microgrid serves as a real-world test-bed for the Center's new materials, devices and power-management systems, which are rooted in thoughtful analyses of the economics of distributed energy. At every point along the way, the Center trains and mentors students to become tomorrow's workforce for green and advanced energy.

SPEC.UCSD.EDU

CENTER FOR WEARABLE SENSORS

4:00 PM SEAMLESS INTEGRATION OF WEARABLE MEDICAL DEVICES

Presenter: Patrick Mercier

Professor, Electrical and Computer Engineering

Wearable devices have the potential to revolutionize how we practice health care, train athletes and support the health and performance of our troops. Unfortunately current-generation wearables can be large and bulky with limited battery life and only measure a small handful of parameters that have limited clinical utility. The Center for Wearable Sensors endeavors to build new sensing devices that measure useful parameters that can help directly affect patient healthcare and behavior, while doing so with ultra-miniaturized sensing electronics that are either extremely energy-efficient or support energy harvesting for seamless integration into daily life. This talk outlines these challenges and proposes several promising solutions, with an emphasis on new bio-energy harvesting technologies.

• Posters from the Center for Wearable Sensors are listed on page 12.

ABOUT: CENTER FOR WEARABLE SENSORS

The Center for Wearable Sensors brings together top UC San Diego faculty, students and researchers in sensors, low-power circuits, materials, electrochemistry, bioengineering, wireless network technologies, preventive medicine, the life sciences and more. This coordinated environment fosters the acceleration of research and system development, and it helps prepare our students to become leaders in the wearable systems workforce.

WEARABLESENSORS.UCSD.EDU

GRADUATE STUDENT POSTERS

CENTER FOR VISUAL COMPUTING

1. PHOTOMETRIC STEREO IN A SCATTERING MEDIUM

Student: Zachary Paul Murez

Faculty: David Kriegman, Ravi Ramamoorthi

2. AUTOMATED ANNOTATION OF CORAL REEF SURVEY IMAGES

Student: Oscar O Beijbom | Faculty: David Kriegman, Serge Belongie

3. UNIFIED MULTI-CUE 3D SHAPES FROM LIGHT FIELD CAMERAS

Student: Jong-Chyi Su | Faculty: Ravi Ramamoorthi

4. A GENERIC LIGHT SCATTERING MODEL FOR RENDERING PHOTOREALISTIC ANIMAL FUR FIBERS

Student: Chiwei Tseng | Faculty: Ravi Ramamoorthi, Henrik Wann Jensen

5. AXIS-ALIGNED FILTERING AND ADAPTIVE SAMPLING FOR INTERACTIVE PHYSICALLY-BASED RENDERING

Student: Krishna B Mullia Lakshminarayana | Faculty: Ravi Ramamoorthi

6. AN APPEARANCE MODEL FOR GLINTS ON FALLEN SNOW

Student: Matteo Toti Mannino

Faculty: Ravi Ramamoorthi, Henrik Wann Jensen

7. REGION-BASED DISCRIMINATIVE FEATURE POOLING FOR SCENE TEXT RECOGNITION

Student: Chenyu Lee | Faculty: Zhuowen Tu, Pamela Cosman

8. DEEPLY SUPERVISED NETS

Students: Saining Xie, Chen-Yu Lee | Faculty: Zhuowen Tu

9. MEDICAL IMAGE SEGMENTATION FOR CARDIOVASCULAR BLOOD FLOW SIMULATION

Student: Jameson Tyler Merkow

Faculty: David Kriegman, Alison Marsden, Zhuowen Tu

10. AUTOMATIC GENERATION OF GEOMETRICALLY CORRECT STEREO PANORAMA IMAGES

Student: Jason Juang | Faculty: Truong Q. Nguyen, Jurgen Schulze

CENTER FOR WEARABLE SENSORS

11. A MINIATURIZED ULTRASONIC POWER DELIVERY SYSTEM

Student: Jiwoong Park | Faculty: Patrick Mercier

12. MINIATURIZED POWER CONVERTERS USING RECURSIVE SWITCHED CAPACITOR TOPOLOGIES

Student: Loai Galal Bahgat Salem | Faculty: Patrick Mercier

13. DRY-TEMPLATED HIGH-RESOLUTION PATTERNING OF CONDUCTIVE METAL NANOPARTICLES

Student: David A Rolfe | Faculty: Albert P. Pisano

14. LARGE-AREA GRAPHENE TRANSFER FROM INDEFINITELY REUSABLE COPPER SUBSTRATE

Student: Aliaksandr Zaretski | Faculty: Darren Lipomi

15. ORGANIC SOLAR CELLS FOR EPIDERMAL ELECTRONICS

Student: Timothy Francis Oconnor | Faculty: Darren Lipomi

16. LANGUAGE OF "GLOVE" - WIRELESS COMMUNICATION OF HAND GESTURES USING PEDOT: PSS SENSORS

Student: Kirtana Mohan Rajan | Faculty: Darren Lipomi, Patrick Mercier

17. WEARABLE TATTOO SENSOR FOR REAL-TIME TRACE-METAL MONITORING IN HUMAN SWEAT

Student: Jayoung Kim | Faculty: Joseph Wang

18. TATTOO-BASED NON-INVASIVE GLUCOSE MONITORING

Student: Amay Jairaj Bandodkar | Faculty: Joseph Wang

SUSTAINABLE POWER AND ENERGY CENTER

19. POROUS SILICON-BASED LITHIUM ION ANODES FOR SECONDARY BATTERIES

Students: Daniel Estrada, David Roberts Faculty: Michael Sailor, Shirley Meng

20. REDUCED THERMAL CONDUCTIVITY DUE TO ELASTIC SOFTENING IN NANOSTRUCTURES FOR THERMOELECTRIC APPLICATIONS

Students: Matthew Christopher Wingert, Soonshin Kwon Faculty: Renkun Chen, Jie Xiang

21. CONJUGATED POLYMERS FOR ROBUST, STRETCHABLE, AND WEARABLE ELECTRONIC DEVICES

Student: Adam David Printz | Faculty: Darren Lipomi

22. INVESTIGATION OF ANATASE-TIO2 AS AN EFFICIENT ELECTRODE MATERIAL FOR MAGNESIUM-ION BATTERIES

Students: Minghao Zhang, Alex MacRae | Faculty: Ying Meng

23. INVESTIGATION ON NOVEL OXIDE AND SULFIDE COMPOUNDS AS ANODE MATERIALS FOR NA-ION BATTERIES

Student: Chuze Ma | Faculty: Shirley Meng

CENTER FOR EXTREME EVENTS RESEARCH

24. TOWARDS A STABILIZED MESHFREE FORMULATION FOR HYDRAULIC FRACTURING SIMULATION

Student: Haoyan Wei | Faculty: Jiun-Shyan Chen

25. MESHFREE METHODS FOR FRAGMENT-IMPACT MODELING AND HOMELAND SECURITY APPLICATIONS

Students: Edouard Marc Yreux, Michael Hillman, Guohua Zhou Faculty: Jiun-Shyan Chen

26. AN IMAGE-BASED COMPUTATIONAL MECHANICS FRAMEWORK FOR SKELETAL MUSCLE SIMULATION

Students: Ramya Rao Basava, Yantao Zhang | Faculty: Jiun-Shyan Chen

27. COMPUTATIONAL TWO-PHASE FLUID-STRUCTURE INTERACTION: AQUATIC SPORTS, OFFSHORE FLOATING WIND TURBINES AND NUMERICAL WAVE GENERATION

Student: Jinhui Yan | Faculty: Yuri Bazilevs

BIOENGINEERING

28. METABOLIC VULNERABILITIES OF MUTANT TUMORS

Student: Seth Jameson Parker | Faculty: Christian Michael Metallo

29. ENTERAL BLOCKADE OF DIGESTIVE PROTEASES ATTENUATES VASOPRESSOR RESISTANCE AFTER HEMORRHAGIC SHOCK

Student: Marco Henry Santamaria | Faculty: Geert Schmid-Schönbein

30. A CMOS 4-CHANNEL MIMO BASEBAND RECEIVER WITH 65DB HARMONIC REJECTION OVER 48MHZ AND 50DB SPATIAL SIGNAL SEPARATION OVER 3MHZ AT 1.3MW

Students: Siddharth Joshi, Chul Kim, Chris Thomas, Sohmyung Ha, Abraham Akinin | Faculty: Gert Cauwenberghs, Larry Larson

31. CONTINUOUS WAVE ULTRASONIC DOPPLER TONOMETRY

Student: Abraham Akinin | Faculty: Gert Cauwenberghs

32. A 16-CHANNEL WIRELESS NEURAL INTERFACING SOC WITH RF-POWERED ENERGY-REPLENISHING ADIABATIC STIMULATION

Students: Sohmyung Ha, Abrahm Akinin, Jiwoong Park, Chul Kim, Hui Wang, Christoph Maier | Faculty: Gert Cauwenberghs, Patrick Mercier

33. ONLINE RECURSIVE INDEPENDENT COMPONENT ANALYSIS FOR REAL-TIME SOURCE SEPARATION OF HIGH-DENSITY EEG

Student: Shenghsiou Hsu | Faculty: Gert Cauwenberghs

34. A 144MHZ INTEGRATED RESONANT REGULATING RECTIFIER WITH HYBRID PULSE MODULATION

Student: Chul Kim | Faculty: Gert Cauwenberghs, Patrick Mercier

35. AN ONLINE BIOSENSOR FOR THE PROTECTION OF WATER SUPPLIES

Student: Garrett Cook Graham | Faculty: Jeff Hasty

36. ORTHOGONAL QUORUM SENSING: COMMUNICATING IN MIXED POPULATIONS

Student: Spencer Raoul Scott | Faculty: Jeff Hasty

37. ASSESSING THE SAFETY OF BIOMATERIAL INJECTION IN THE HEART

Student: Sophia Lynn Suarez | Faculty: Karen Christman

38. ENGINEERING MULTIPOTENT MESODERM PROGENITORS FOR CELL THERAPY

Student: Shenghan Yu | Faculty: Mark Mercola

39. A COMPARISON OF MIRNA EXPRESSION LEVELS BETWEEN PLASMA AND LYMPHOCYTES OF CHRONIC LYMPHOCYTIC LEUKEMIA (CLL) PATIENTS USING QIAGEN AND DEP METHODS

Student: Ryan Wai Tam | Faculty: Michael Heller

40. 3-D ORGANIZATION OF CELLS AND MATRIX IN HUMAN ARTICULAR CARTILAGE

Student: Neil Chang | Faculty: Robert Sah

41. CUSTOMIZED OSTEOCHONDRAL GRAFTS FOR CARTILAGE RESURFACING: EFFECTS OF CONTOUR AND PLACEMENT ON BIOMECHANICS OF FEMORO-TIBIAL CONTACT IN THE GOAT

Student: Jason Patrick Caffrey | Faculty: Robert Sah

42. EFFECT OF TEMPERATURE AND UV ILLUMINATION ON CHARGE TRANSPORT MECHANISMS IN DNA

Student: Alaleh Golkar Narenji | Faculty: Samuel Kassegne, Michael Heller

43. BIOMATERIAL-MEDIATED BONE TISSUE ENGINEERING

Students: Vikram G Rao, Heemin Kang | Faculty: Shyni Varghese

44. A BIOENGINEERED APPROACH TO CELL-BASED THERAPIES FOR MUSCULAR DYSTROPHY

Student: Sara Hariri | Faculty: Shyni Varghese

45. 3D PATTERNING AS A PLATFORM OF CELLULAR ANALYSIS,
WITH APPLICATIONS IN QUANTITATIVE STUDY OF CANCER
PROLIFERATION

Student: Shruti Krishna Kumar Davey | Faculty: Shyni Varghese

46. BIOMINERALIZED MATRICES DOMINATE SOLUBLE CUES TO DIRECT OSTEOGENIC DIFFERENTIATION OF HUMAN MESENCHYMAL STEM CELLS THROUGH ADENOSINE SIGNALING

Students: Heemin Kang, Yu-Ru Shih | Faculty: Shyni Varghese

47. THREE-DIMENSIONAL CARDIAC MICROTISSUES IN A PERFUSION-BASED DEVICE: AN IN VITRO PLATFORM

Student: Ivneet Singh Bhullar | Faculty: Shyni Varghese

48. EFFICIENT BAYESIAN INFERENCE METHODS VIA CONVEX OPTIMIZATION AND OPTIMAL TRANSPORT

Student: Diego Alberto Mesa | Faculty: Todd Coleman

49. NATIVE AND LABELED NUCLEOTIDE INCORPORATION KINETICS MEASURED USING BY COMPETITIVE PARALLEL REACTIONS

Student: Matthew T Walsh | Faculty: Xiaohua Huang

50. SEQUENTIAL SIGNALING OF FAK, SRC AND FOCAL ADHESION DYNAMICS IN CANCER CELL ADHESION

Student: Yiqian Wu | Faculty: Yingxiao Wang

COMPUTER SCIENCE & ENGINEERING

51. DESIGN GUIDELINES AND OPTIMIZATION OF DRAM INTERCONNECT

Student: Mulong Luo | Faculty: Andrew B. Kahng

52. MATEX: A DISTRIBUTED FRAMEWORK FOR TRANSIENT SIMULATION OF POWER DISTRIBUTION NETWORKS

Students: Hao Zhuang, Ilgweon Kang Faculty: Chung-Kuan Cheng

53. EPLACE-3D: ELECTROSTATICS BASED 3D IC PLACEMENT USING NESTEROV'S METHOD

Students: Ilgweon Kang, Hao Zhuang | Faculty: Chung-Kuan Cheng

54. A NON-CONTACT BIOPOTENTIAL SENSING SYSTEM WITH MOTION ARTIFACT SUPPRESSION

Students: Jeng-Hau Lin, Xinan Wang | Faculty: Chung-Kuan Cheng

55. ANALYZING SOCIAL MEDIA TO CHARACTERIZE HIV AT-RISK POPULATIONS AMONG MSM IN SAN DIEGO

Student: Narendran Thangarajan | Faculty: Nadir Weibel

56. A SCALABLE MODEL FOR TIMING ERROR PREDICTION UNDER HARDWARE AND WORKLOAD VARIATIONS

Students: Xun Jiao, Abbas Rahimi | Faculty: Rajesh Gupta

57. FAULT DETECTION AND ANALYSIS OF HVAC SYSTEMS IN COMMERCIAL BUILDINGS

Students: Bharathan Balaji, Jason Koh Faculty: Rajesh Gupta, Anthony Acampora, Yuvraj Agarwal

58. HARDWARE ACCELERATED NOVEL OPTICAL DE NOVO ASSEMBLY FOR LARGE-SCALE GENOMES

Student: Pingfan Meng | Faculty: Ryan Kastner

59. EMBEDDED 3D RECONSTRUCTION IN REAL TIME

Students: Quentin Kevin Gautier, Alexandria Shearer, Zac Blair Faculty: Ryan Kastner

60. 3D SOUNDSCAPING AND HYDROPHONE LOCALIZATION USING AMBIENT OCEAN NOISE FIELDS

Students: Riley Thomas Yeakle, Perry Naughton

Faculty: Ryan Kastner

61. USING COMPUTER VISION TO MAP ENVIRONMENTS FOR ROBOTICS AND ARCHEOLOGICAL DOCUMENTATION

Students: Dustin Alexander Richmond, Alric Althoff Faculty: Ryan Kastner

62. CONSTRUCTING DEPTH MAPS USING A DYNAMIC VISION SENSOR (DVS) AND A LIQUID LENS

Student: Alireza Khodamoradi | Faculty: Ryan Kastner

63. AUTOMATED HIGH THROUGHPUT CELL IMAGE ANALYSIS SYSTEM USING FPGA

Student: Dajung Lee | Faculty: Ryan Kastner

64. CONNECTING STORIES AND LEARNING OBJECTIVES INCREASES PARTICIPANT MOTIVATION IN ONLINE DISCUSSIONS

Student: Vineet Pandey | Faculty: Scott Klemmer

65. GADGETRON: SYNTHESIZING ELECTRONIC GADGETS

Student: Devon James Merrill | Faculty: Steven Swanson

66. DISTRIBUTED CONTROL OF A SWARM OF BUILDINGS CONNECTED TO A SMART GRID

Students: Baris Aksanli, Alper Sinan Akyurek Faculty: Tajana Simunic-Rosing

67. BALANCING ENERGY AND DELAY IN HETEROGENEOUS APPLICATIONS RUNNING WSNS

Student: Jinseok Yang | Faculty: Tajana Simunic-Rosing

68. USAGE ANALYTICS AND SYSTEM TUNING FRAMEWORK FOR INTERACTIVE MOBILE APPLICATIONS

Students: Mohsen Imani, Shruti Patil | Faculty: Tajana Simunic-Rosing

69. USARE: IMPROVED USABILITY AND RELIABILITY OF MOBILE DEVICES BY USING A NOVEL DYNAMIC VARIABILITY AND THERMAL MANAGEMENT TECHNIQUE.

Students: Pietro Mercati, Francesco Paterna Faculty: Tajana Simunic-Rosing

70. A CONTEXT-DRIVEN MIDDLEWARE ARCHITECTURE FOR THE INTERNET OF THINGS

Students: Jagannathan Venkatesh, Christine Chan

Faculty: Tajana Simunic-Rosing

71. ECOLOGY OF OPEN ALGAE PONDS FOR THE PRODUCTION OF BIOFUELS

Student: Doruk Beyter | Faculty: Vineet Bafna

ELECTRICAL & COMPUTER ENGINEERING

72. EVALUATION OF BEOL DESIGN RULE IMPACTS ON SUB-20NM VLSI DESIGNS

Student: Hyein Lee | Faculty: Andrew B. Kahng

73. IMPLEMENTATION AND BENEFIT EXPLORATION OF SEQUENTIAL 3DICS

Students: Weiting Chan, Siddhartha Nath | Faculty: Andrew B. Kahng

74. CLOCK TREE SYNTHESIS OPTIMIZATION FOR MODERN SOC DESIGN

Students: Jiajia Li, Han Kwangsoo | Faculty: Andrew B. Kahng

75. OPTIMAL BEOL SCALING FOR PERFORMANCE IN ADVANCED NODES

Students: Yaping Sun, Pooja Shah | Faculty: Andrew B. Kahng

76. CELL-FREE MASSIVE MIMO SYSTEMS

Student: Elina Nayebi | Faculty: Bhaskar Rao

77. OPTIMAL OPPORTUNISTIC SCHEDULING FOR WIRELESS SYSTEMS VIA CLASSIFICATION TECHNIQUES

Student: Phuongbang Cat Nguyen

Faculty: Bhaskar Rao

78. DOWNLINK CHANNEL ESTIMATION IN MASSIVE MIMO SYSTEMS BASED ON DICTIONARY LEARNING

Student: Yacong Ding | Faculty: Bhaskar Rao

79. BAYESIAN SPARSE SIGNAL RECOVERY FRAMEWORKS: TYPE I OR TYPE II?

Student: Ritwik Giri | Faculty: Bhaskar Rao

81. PLASMONIC BIOSENSORS

Student: Ashok Kodigala | Faculty: Boubacar Kante

82. FABRICATION AND PERFORMANCE OF DILUTE NITRIDE GAP/ GANP CORE/SHELL NANOPILLAR-BASED SOLAR CELLS

Student: Supanee Sukrittanon

Faculty: Charles Tu, Shadi Ahmad Dayeh

83. GROWTH OF DILUTE NITRIDE GAINNAS/GAAS CORE/SHELL NANOWIRES ON SI(111) BY GAS SOURCE MOLECULAR BEAM EPITAXY

Student: Rui La | Faculty: Charles Tu

84. NONLINEAR METAMATERIALS FOR MICROWAVE ABSORBERS

Student: Sanghoon Kim | Faculty: Daniel Sievenpiper

85. METASURFACE BASED MICRO-PLASMA DEVICES

Students: Shiva Piltan, Ebrahim Forati | Faculty: Daniel Sievenpiper

86. W-BAND SPATIAL POWER COMBINER

Student: Minu Mariam Jacob | Faculty: Daniel Sievenpiper

87. GENERATION AND MANIPULATON OF DOMAIN WALLS USING A THERMAL GRADIENT IN A FERRIMAGNETIC COTB WIRE

Student: Robert Douglas Tolley | Faculty: Eric Fullerton

88. MODEL-BASED HIERARCHICAL TOPIC MODELS

Student: Arya Iranmehr | Faculty: Gert Lanckriet

89. SCALING LIMITS OF MEMS OPTICAL BEAM-STEERING SWITCHES FOR DATA CENTER NETWORKS

Student: William Maxwell Mellette | Faculty: Joseph Ford

90. AUTOMATIC DRIVE ANALYSIS BY CONTINUOUS VISUAL OBSERVATION OF DRIVER FOR LARGE NATURALISTIC DRIVING STUDIES

Student: Sujitha Catherine Martin | Faculty: Mohan Trivedi

91. NIGHT-TIME DRIVE ANALYSIS USING STEREO-VISION FOR DATA REDUCTION IN NATURALISTIC DRIVING STUDIES

Students: Morten Borno Jensen, Mark Philip Philipsen Faculty: Mohan Trivedi

92. OBJECT DETECTION WITH APPEARANCE PATTERNS FOR DRIVER ASSISTANCE

Student: Eshed Meir Ohn-Bar | Faculty: Mohan Trivedi

93. VIVA 2015: VISION FOR INTELLIGENT VEHICLES & APPLICATIONS' FACE CHALLENGE

Students: Kevan Chun Yiu Yuen, Dennis Shen Faculty: Mohan Trivedi

94. VIVA CHALLENGE 2015: DRIVER HANDS IN ACTION

Students: Nikhil Ranjan Das, Rakesh Nattoji Rajaram Faculty: Mohan Trivedi

95. DYNAMIC POOLING FOR COMPLEX EVENT RECOGNITION

Student: Weixin Li | Faculty: Nuno Vasconcelos

96. LEARNING RECEPTIVE FIELDS FOR POOLING FROM TENSORS OF FEATURE RESPONSE

Student: Can Xu | Faculty: Nuno Vasconcelos

97. SCENE CLASSIFICATION WITH CONVOLUTIONAL NEURAL NETWORKS

Students: Mandar Dilip Dixit, Si Chen | Faculty: Nuno Vasconcelos

98. MULTIHEAD MULTITRACK DETECTION WITH REDUCED STATE SEQUENCE ESTIMATION

Student: Bing Fan | Faculty: Paul Siegel

99. TUNNELING-BASED MODELLING OF LEAKAGE CURRENT IN GRAPHENE ELECTROCHEMICAL CAPACITORS

Student: Hidenori Yamada | Faculty: Prabhakar Bandaru, Peter M Asbeck, Yuan Taur, Paul K.L. Yu

100. STRUCTURE FROM MOTION IN MARITIME ARCHAEOLOGY

Student: Perry W Naughton | Faculty: Ryan Kastner

101. SMART FIBER SENSOR ASSISTED IN VIVO NEEDLE GUIDANCE FOR MINIMALLY INVASIVE PROCEDURES

Student: Saharnaz Baghdadchi | Faculty: Sadik Esener

102. MONOLITHIC INTEGRATION OF ULTRA-SCALED HIGH PERFORMANCE PIN-SIZE WEARABLE ELECTRONICS

Student: Namseok Park | Faculty: Shadi Ahmad Dayeh

103. NOVEL NEURAL PROBE TECHNOLOGIES: TOWARD HIGH DENSITY, FIDELITY, AND FLEXIBILITY

Students: Sang Heon Lee, Renjie Chen | Faculty: Shadi Ahmad Dayeh

104. BEYOND 10-M THICK CRACK-FREE GAN GROWTH ON SI FOR HIGH POWER DEVICE APPLICATIONS

Student: Atsunori Tanaka | Faculty: Shadi Ahmad Dayeh

105. SURFACE PASSIVATION STUDIES ON VERTICAL JUNCTION SILICON MICROWIRE SOLAR CELLS

Students: Yun Goo Ro, Renjie Chen | Faculty: Shadi Ahmad Dayeh

106. LARGE SCALE CORTICAL SINGLE NEURON RECORDINGS

Student: Mehran Ganji | Faculty: Shadi Ahmad Dayeh

107. TRANSPARENT, FLEXIBLE, AND SCALABLE ZNO THIN-FILM TRANSISTOR PRESSURE SENSORS

Students: Siarhei Vishniakou, Namseok Park, Phat Phan, Brian Lewis,

Jacob Stanley, James Wingert

Faculty: Shadi Ahmad Dayeh, Deli Wang

108. IS TODAY'S CMOS-COMPATIBLE SILICON TOMORROW'S UBIQUITOUS QUANTUM KEY DISTRIBUTION TECHNOLOGY?

Student: Ranjeet Kumar | Faculty: Shayan Mookherjea

109. SILICON PHOTONIC WDM NODE INTEGRATED IN UCSD CIRCUIT-SWITCHED RING NETWORK

Student: Hannah Rae Grant | Faculty: Shayan Mookherjea

110. POWER-EFFICIENT BASE STATION OPERATION THROUGH USER QOS-AWARE ADAPTIVE RF CHAIN SWITCHING TECHNIQUE

Student: Po-Han Chiang | Faculty: Sujit Dey

111. ACCESS PREDICTION FOR KNOWLEDGE WORKERS IN ENTERPRISE DATA REPOSITORIES

Student: Chetan Kumar Verma | Faculty: Sujit Dey

112. OPTIMIZING CLOUD MOBILE 3D DISPLAY GAMING USER EXPERIENCE BY ASYMMETRIC OBJECT OF INTEREST RENDERING

Student: Yao Lu | Faculty: Sujit Dey

113. MODELING AND CHARACTERIZATION OF IMAGING FIBER BUNDLES

Student: Nojan Motamedi | Faculty: Vitaliy Lomakin, Joseph Ford

114. GAIN-ENHANCED TRANSMISSION IN NEAR-INFRARED HYPERBOLIC METAMATERIALS

Student: Joseph Stephen Thomas Smalley | Faculty: Yeshaiahu (Shaya) Fainman, Boubacar Kante, Eric Fullerton, Zhaowei Liu

115. CARTRIDGE LAB ON A CHIP (CLOC) FOR MOBILE HEALTH

Students: Brandon John Sung Hyun Hong, Lindsay Freeman, Alexei

Smolyaninov, Lin Pang, Maxim Abashin Faculty: Yeshaiahu (Shaya) Fainman

MECHANICAL & AEROSPACE ENGINEERING

116. CAPACITIVE MICRO SCALE SENSOR FOR MONITORING OIL DROPLETS IN THE OCEAN

Student: Xiaoyue Jiang | Faculty: Albert P. Pisano

117. A MICRO LOOP HEAT PIPE THERMAL MANAGEMENT SYSTEM WITH AN INTERLINE OPTIMIZED EVAPORATOR AND A COHERENT POROUS SILICON WICK

Student: Lilla M Smith | Faculty: Albert P. Pisano

118. TOWARDS SEPARATING DNA AND MRNA IN SINGLE CELLS

Student: Gordon Donald Hoople | Faculty: Albert P. Pisano

119. NANO-COMPOSITE DIELECTRIC MATERIALS FOR HIGH PERFORMANCE ENERGY STORAGE

Student: Anju Toor | Faculty: Albert P. Pisano

120. NANOWIRE SENSORS FOR IONIC SPECIES MEASUREMENT

Student: Maria Pace | Faculty: Albert P. Pisano

121. TRANSLUMINAL ATTENUATION GRADIENT FOR THROMBOTIC RISK ASSESSMENT IN KAWASAKI DISEASE PATIENTS WITH CORONARY ARTERY ANEURYSMS

Student: Noelia Grande Gutierrez | Faculty: Alison Marsden

122. NEW MODEL FOR CELL MOTILITY

Student: Kimoon Um | Faculty: Daniel Tartakovsky, Padmini Rangamani

123. A ROBOTIC HYBRID PLATFORM FOR AUTOMATED MULTISPECTRAL IMAGING AND SPECTROSCOPY OF CULTURAL ARTIFACTS

Student: Samantha Stout | Faculty: Falko Kuester

124. IMPACT OF PRE-PLASMA AND PULSE LENGTH ON FAST ELECTRON GENERATION ON THE HIGH INTENSITY TITAN LASER

Student: Jonathan Lee Peebles

Faculty: Farhat Beg, Sergei Krasheninnikov

125. STUDY OF HEAT ASSISTED MAGNETIC RECORDING AND HYDROCARBON CONTAMINATION IN HARD DISK DRIVES

Students: Benjamin Ying-Xiu Suen, Young Woo Seo, Longqiu Li

Faculty: Frank E. Talke

126. DEVELOPMENT OF A OPTICAL-BASED INTRAOCULAR PRESSURE SENSOR

Student: Alex Minh Giang Phan | Faculty: Frank E. Talke

127. DESIGN AND FINITE ELEMENT ANALYSIS OF COLLOCATED SUSPENSIONS IN HARD DISK DRIVES

Students: Karcher William Morris, Youyi Fu, Yangfan Wang, Longqiu Li Faculty: Frank E. Talke

128. HEAVY IMPURITY TRANSPORT IN CSDX PLASMA

Student: Jordan James Gosselin | Faculty: George Tynan

129. MODEL DEVELOPMENT OF HYDROGEN RETENTION IN ION BEAM DAMAGED TUNGSTEN FOR NUCLEAR FUSION APPLICATIONS

Student: Joseph Lincoln Barton | Faculty: George Tynan

130. LAGRANGIAN COHERENT STRUCTURES WITH HIGH-ORDER DISCONTINUOUS-GALERKIN METHODS

Student: Daniel A Nelson | Faculty: Gustaaf Jacobs, Sutanu Sarkar

131. PLANAR MICROFLUIDIC DROP SPLITTING AND MERGING

Student: Sean Collignon | Faculty: James Friend

132. SPATIO-TEMPORAL CORRELATION OF SOLAR RADIATION INCORPORATING CLOUD SPEED AND DIRECTION

Student: Shahrouz Alimohammadi | Faculty: Jan Kleissl

133. SIZING OF PHOTOVOLTAIC REVERSE OSMOSIS (PVRO) FOR SOLAR DESALINATION SYSTEM BASED ON HISTORICAL DATA AT THE SOUTHWEST USA

Student: Abdulelah Habib | Faculty: Jan Kleissl, Raymond de Callafon

134. FACTORS CONTROLLING STRATOCUMULUS CLOUD DISSIPATION OVER THE COAST

Student: Mohamed Sherif Ghonima | Faculty: Jan Kleissl

135. MICROSTRUCTURE AND BIOINSPIRED APPLICATION OF ARISTOTLE'S LANTERN: URCHINS FROM THE SEA TO MARS

Students: Wei Huang, Michael Frank, Steven Naleway, Jae-Young Jung Faculty: Joanna Mckittrick, Marc A. Meyers

136. EASING THE FABRICATION OF BIOINSPIRED COMPOSITES THROUGH THE USE OF CLATHRATE HYDRATES IN FREEZE CASTING

Student: Steven Eric Naleway

Faculty: Joanna Mckittrick, Marc A. Meyers

137. DEVELOPMENT OF PHOSPHORS FOR SOLID-STATE LIGHTING

Students: Jungmin Ha, Zhenbin Wang, Ekaterina Novitskaya Faculty: Joanna Mckittrick, Olivia A Graeve, Shyue Ping Ong

138. SPINES OF THE PORCUPINE FISH: STRUCTURE, COMPOSITION, AND MECHANICAL PROPERTIES

Student: Frances Yenan Su | Faculty: Joanna Mckittrick

139. MAGNETIC FREEZE CASTING: POROUS SCAFFOLDS BIO-INSPIRED BY BONE

Students: Michael Brian Frank, Tsuk Haroush, Sze Hei Siu, Jerry Ng, Ivan Torres | Faculty: Joanna Mckittrick

140. MN4+-DOPED PHOSPHORS, A PROMISING CANDIDATE

Student: Seung-Hyo Lee | Faculty: Joanna Mckittrick

141. DENSIFICATION BEHAVIOR AND CONSTITUTIVE MODELING OF ZIRCONIUM NITRIDE CONSOLIDATED BY FIELD ASSISTED SINTERING TECHNIQUES

Student: Geuntak Lee | Faculty: Joanna Mckittrick

142. STRUCTURAL ANALYSIS OF THE WOODPECKER TONGUE AND HYOID APPARATUS

Students: Jae-young Jung, Vincent Sherman, Steven Naleway, Eric Bushong, Esther Cory

Faculty: Joanna Mckittrick, Marc A. Meyers, Robert Sah

143. DEVELOPING A PORTABLE MICRO HYDROKINETIC TURBINE FOR RURAL AND EMERGENCY ELECTRIFICATION

Student: Spencer Riley Ellis | Faculty: John Kosmatka

144. DETECTING DAMAGE IN A UAV COMPOSITE WING SPAR TESTBED USING DISTRIBUTED FIBER OPTIC STRAIN SENSORS

Student: Benjamin Levi Martins | Faculty: John Kosmatka

145. ROBUST DISTRIBUTED ALGORITHM FOR OPTIMIZED POWER GENERATION IN FUTURE GRIDS

Student: Ashish Kumar Cherukuri | Faculty: Jorge Cortes

146. A CLINICAL METHOD FOR MAPPING AND QUANTIFYING BLOOD STASIS IN THE LEFT VENTRICLE

Student: Lorenzo Rossini | Faculty: Juan Carlos del Alamo

147. SPALL STRENGTH DEPENDENCE ON STRAIN RATE AND GRAIN SIZE IN TANTALUM

Student: Tane Perry Remington | Faculty: Marc A. Meyers

148. STRUCTURE AND MECHANICAL BEHAVIOR OF COELACANTH FISH SCALES

Student: Haocheng Quan | Faculty: Marc A. Meyers

149. LIGHTWEIGHT, RIGID, YET COMPLIANT BIOLOGICAL COMPOSITES: THE MECHANICS OF HOW FUNCTION RELATES TO STRUCTURE IN FEATHER BARBS

Student: Tarah Naoe Sullivan | Faculty: Marc A. Meyers

150. PROTECTIVE FUNCTION OF PANGOLIN SCALES: STRUCTURE AND MECHANICAL PROPERTIES

Student: Bin Wang | Faculty: Marc A. Meyers

151. SPARK PLASMA SINTERING OF ZIRCONIUM CARBIDE: DENSIFICATION BEHAVIORS AND MECHANICAL PROPERTIES

Student: Xialu Wei | Faculty: Marc A. Meyers

152. ULTRAFINE-GRAINED TITANIUM BY DYNAMIC DEFORMATIONStudent: Zezhou Li | Faculty: Marc A. Meyers

153. MECHANICAL PERFORMANCE, CONSTITUTIVE RESPONSE, AND FRAGMENTATION OF TAILORED MESOSTRUCTURED ALUMINUM-BASED COMPACTS

Student: Andrew Marquez | Faculty: Marc A. Meyers

154. THE GANOID SCALES OF ATRACTOSTEUS SPATULA: POTENTIAL FOR BIOINSPIRED FLEXIBLE ARMOR

Student: Vincent Robert Sherman | Faculty: Marc A. Meyers

155. SPARK PLASMA SINTERING NOVEL TOOLING DESIGN: TEMPERATURE UNIFORMIZATION

Student: Diletta Giuntini | Faculty: Marc A. Meyers, Eugene Olevsky

156. SHOCK INDUCED AMORPHIZATION AND RE-NANOCRYSTALLIZATION OF SILICON

Student: Shiteng Zhao | Faculty: Marc A. Meyers

157. LIPOSOMAL POROUS SILICON NANOPARTICLES AS A GENE DELIVERY SYSTEM

Students: Byungji Kim, Jinyoung Kang | Faculty: Michael Sailor

158. RATIOMETRIC DETECTION OF NEUROTRANSMITTER DOPAMINE VIA LUMINESCENT POROUS SILICON

Student: Geoffrey Ian Hollett | Faculty: Michael Sailor

159. SELF-REPORTING DRUG DELIVERY WITH POROUS SILICON PARTICLES FOR OCULAR THERAPUTICS

Student: Joanna Wang | Faculty: Michael Sailor

160. AUTOMATED TUNING OF ION SOURCE PARAMETERS

Student: Gregory Matthew Mills | Faculty: Miroslav Krstic

161. STATE-OF-CHARGE ESTIMATION FOR LITHIUM-ION BATTERIES VIA A COUPLED THERMAL-ELECTROCHEMICAL MODEL

Student: Shuxia Tang | Faculty: Miroslav Krstic

162. CORRELATION BETWEEN PARTICLE SIZE AND GRAIN SIZE DISTRIBUTIONS IN SINGLE/MULTIPHASE CERAMICS

Student: Keyur Karandikar | Faculty: Olivia A Graeve

163. USING TOOL STEEL IN METAL-CERAMIC COMPOSITES

Student: James Timothy Cahill | Faculty: Olivia A Graeve

164. DEVITRIFICATION BEHAVIOR OF AMORPHOUS METAL FOILS DURING SPARK PLASMA SINTERING

Student: Boyao Zhang | Faculty: Olivia A Graeve

165. FABRICATION OF MONO-SIZED MESOPORES ON GOLD-COATED POLYSTYRENE PARTICLE SURFACES FOR ENZYME IMMOBILIZATION

Student: Seongcheol Choi | Faculty: Olivia A Graeve

166. MORPHOLOGICAL CHARACTERISTICS OF GOLD/COBALT JANUS NANOPARTICLES

Student: Kyungah Seo | Faculty: Olivia A Graeve

167. EXPLORING THE FUNDAMENTAL BEHAVIOR OF TAILORED NANOSCALE CARBIDE MORPHOLOGIES: MATERIALS BY DESIGN FOR ULTRA-HIGH TEMPERATURE APPLICATIONS

Student: Tianqi Ren | Faculty: Olivia A Graeve

168. ELECTRICALLY-CONDUCTIVE MESOPOROUS CERAMICS FOR BIOCATALYSIS APPLICATIONS

Students: Shuang Qiao, Ekaterina Novitskaya, Grecia Pena, Lauren Lopez, Frida Durazo | Faculty: Olivia A Graeve

169. INCREASING ENERGY STORAGE IN ACTIVATED CARBON BASED ULTRA-CAPACITORS THROUGH PLASMA TREATMENT

Student: Marcelis L Muriel | Faculty: Prabhakar Bandaru

170. TWENTY-FOLD ENHANCEMENT OF QUANTUM EFFICIENCY IN PHOTOELECTRON EMISSION THROUGH TEXTURE DESIGNED SURFACES

Student: Anna Alexander | Faculty: Prabhakar Bandaru

171. FLYING HEIGHT CONTROL OF RECORDING HEADS AT SUB-NANOMETER SPACING

Student: Liane Manuela Matthes Faculty: Raymond de Callafon, Frank E. Talke

172. MODULAR BATTERY EXCHANGE AND ACTIVE MANAGEMENT (M-BEAM)

Student: Xin Zhao | Faculty: Raymond de Callafon

173. EFFECTIVE AND REGENERABLE COOLING USING TOUGH HYDROGELS

Students: Shuang Cui, Chi Hyung Ahn Faculty: Renkun Chen, Shengqiang Cai

174. PUTTING THE SUN INTO A BOX: WHEN HIGH TEMPERATURE PLASMA MEET COLD MATERIAL

Student: Jerome Guterl

Faculty: Sergei Krasheninnikov, Roman Smirnov

175. ON ABLATION CLOUD SHIELDING EFFECTS OF TUNGSTEN DUST IN EDGE PLASMA

Student: Rima Joseph Hajjar | Faculty: Sergei Krasheninnikov

176. ELECTROMAGNETIC EFFECTS ON DYNAMICS OF HIGH-BETA FILAMENTARY STRUCTURES IN FUSION PLASMAS

Student: Wonjae Lee | Faculty: Sergei Krasheninnikov

177. CONTROL OF USER-SIDE RESOURCES FOR EFFICIENT OPERATION OF THE POWER GRID

Student: Andres Ivan Cortes | Faculty: Sonia Martínez

178. VIRUS DIFFUSION CONTROL

Student: Eduardo Jose Ramirez Llanos | Faculty: Sonia Martínez

179. THE PROPAGATION OF TSUNAMI GENERATED ACOUSTIC-GRAVITY WAVES IN THE ATMOSPHERE

Student: Yue Wu

Faculty: Stefan Llewellyn Smith, James Rottman, Jean-Bernard Minster

180. DESIGN AND CONTROL OF A MINIATURE BALL-BALANCING ROBOT USING MUTUALLY-ORTHOGONAL OMNIWHEELS

Students: Daniel Jiaji Yang, Eric Sihite | Faculty: Thomas Bewley

181. DUCTTV2, A TENSEGRITY ROBOT FOR EXPLORING DUCT SYSTEMS

Student: Jeffrey Michael Friesen | Faculty: Thomas Bewley

182. ENKF-BASED OCEAN WAVE PREDICTION FOR IMPROVED MARINE SAFETY

Student: Daniele Cavaglieri | Faculty: Thomas Bewley

183. STRONGLY NONLINEAR STRESS WAVES IN DISSIPATIVE METAMATERIALS

Student: Yichao Xu | Faculty: Vitali Nesterenko

184. AN IDEMPOTENT ALGORITHM FOR A CLASS OF NETWORK-DISRUPTION GAMES

Student: Amit Prakash Pandey | Faculty: William McEneaney

NANOENGINEERING

185. PLASMONIC METAMATERIALS FOR ENHANCED EMISSION & SENSING

Student: Matthew Joseph Rozin | Faculty: Andrea Tao

186. SELF-ASSEMBLED NANOCRYSTALS FOR TIP-ENHANCED RAMAN SPECTROSCOPY (TERS)

Student: Tyler Jamison Dill | Faculty: Andrea Tao

187. MECHANICAL PROPERTIES OF SEMI-CONDUCTING POLYMERS AND COMPOSITES: A COARSE-GRAINED MOLECULAR DYNAMICS STUDY

Student: Samuel Evan Root | Faculty: Darren Lipomi, Gaurav Arya

188. 3-D STRAIN IMAGING OF NANOPARTICLES

Student: Sohini Manna | Faculty: Eric Fullerton

189. ELECTROCATALYTIC ABILITY OF COBALT FERRITE NANOPARTICLES FOR SOLAR THERMOCHEMICAL HYDROGEN PRODUCTION

Students: Nicole Shellhammer Pacheco, Neil Verma Faculty: Jan Talbot

190. ARTIFICIAL MICROMOTORS IN THE MOUSE'S STOMACH: A STEP TOWARDS IN VIVO USE OF BIOMEDICAL MICRO-ROBOTS

Student: Jinxing Li | Faculty: Joseph Wang, Liangfang Zhang

191. EXPLORATION OF AGING TIME AND TEMPERATURE ON A SUPERELASTIC FERROUS-BASED ALLOY

Students: Cheng Zhang, Steven McCloskey Faculty: Kenneth S. Vecchio

192. FREE VOLUME AND TOUGHNESS OF WEAR-RESISTANT CU-ZR-BASED BULK METALLIC GLASSES

Student: Laura Michelle Andersen | Faculty: Kenneth S. Vecchio

193. FIRST PRINCIPLES STUDY OF MASNX3 ORGANOHALIDE PEROVSKITES FOR NEXT GENERATION SOLAR CELLS

Students: Maziar Alexander Behtash, Camille Bernal, Paul Hyunggyu Joo | Faculty: Kesong Yang

194. DECOY BIOMIMETIC NANOPARTICLES FOR THE CLEARANCE OF HARMFUL ANTIBODIES: A NOVEL APPROACH TO TREATING AUTOIMMUNE DISEASE

Student: Brian Tsengchi Luk | Faculty: Liangfang Zhang

195. ANTIBACTERIAL VACCINATION UTILIZING BACTERIAL MEMBRANE-COATED NANOPARTICLES

Student: Pavimol Angsantikul | Faculty: Liangfang Zhang

196. STRUCTURE AND BIOMECHANICAL BEHAVIOR OF HUMAN HAIR

Student: Yang Daniel Yu | Faculty: Marc A. Meyers

197. EXTREME PLASTIC DEFORMATION: MOLECULAR DYNAMICS SIMULATIONS

Student: Eric Nicholas Hahn | Faculty: Marc A. Meyers

198. CALCIUM SILICATE COATED POROUS SILICON NANOPARTICLES FOR SIRNA DELIVERY

Student: Jinyoung Kang | Faculty: Michael Sailor

199. FACETED SHAPE OF COLLOIDAL GRAPHENE OXIDE NANOPARTICLES

Student: Sejung Kim | Faculty: Michael Heller

200. DETECTION OF PROTEASE ACTIVITY DIRECTLY IN WHOLE BLOOD

Student: Elaine Alexandra Skowronski | Faculty: Michael Heller

201. ENHANCED FLUORESCENT RESONANT ENERGY TRANSFER IN DNA

Student: Taeseok Oh | Faculty: Michael Heller

202. BIO-INSPIRED DETOXIFICATION USING 3D-PRINTED HYDROGEL NANOCOMPOSITES

Student: Wei Zhu | Faculty: Shaochen Chen

STRUCTURAL ENGINEERING

203. CYCLIC BEHAVIOR OF DEEP STEEL WIDE-FLANGE COLUMNS FOR MOMENT FRAME APPLICATIONS

Student: Gulen Ozkula | Faculty: Chia-Ming Uang

204. NONLINEAR AEROELASTIC ANALYSIS OF FLAPPING MICRO AIR VEHICLES

Student: Enrico Santarpia | Faculty: David Benson, Luciano Demasi

205. INFORMING HISTORICAL PRESERVATION WITH THE USE OF NON-DESTRUCTIVE DIAGNOSTIC TECHNIQUES: A CASE STUDY AT ECAB, QUINTANA ROO, MEXICO

Student: Michael Robert Hess | Faculty: Falko Kuester

206. TOMOGRAPHIC IMAGING OF STRUCTURAL FLAWS WITH NEW ADAPTIVE WEIGHTS ON ARRAY

Students: Thompson Vu Nguyen, Simone Sternini Faculty: Francesco Lanza di Scalea

207. NON-CONTACT ULTRASONIC GUIDED WAVE INSPECTION OF RAILS

Students: Stefano Mariani, Thompson Nguyen

Faculty: Francesco Lanza di Scalea

208. HYBRID SIMULATION OF STEEL BUILDING WITH STIFF ROCKING CORES FOR IMPROVED SEISMIC DRIFT DISTRIBUTION

Student: Alireza Sarebanha | Faculty: Gilberto Mosqueda

209. MODULATED BISTABLE INERTIAL GENERATOR FOR BROADBAND VIBRATION ENERGY HARVESTING

Student: Scott Anthony Ouellette | Faculty: Michael Todd

210. GAUGING THE FEASIBILITY OF A DOWNHOLE ENERGY HARVESTING SYSTEM THROUGH A PROOF-OF-CONCEPT STUDY

Student: Eric John Kjolsing | Faculty: Michael Todd, Charles Farrar

211. MODELING OF DOWEL ACTION IN BRIDGE ABUTMENT SHEAR KEYS

Student: Alexandra Kottari | Faculty: P. Benson Shing, Jose Restrepo

212. TIME-DOMAIN SIMULATIONS OF OFFSHORE FLOATING WIND TURBINES

Student: Seyedeh Sara Salehyar | Faculty: Qiang Zhu

213. DETERMINATION OF SEISMIC PROTECTION FACTORS FOR ANCHORAGE OF NONSTRUCTURAL COMPONENTS INTO CONCRETE

Student: Timothy Paul Johnson

Faculty: Robert Dowell, Tara Hutchinson

DEPARTMENTS AND RESEARCH CENTERS

AGILE RESEARCH CENTERS

Center for Extreme Events Research CEER.ucsd.edu

Center for Wearable Sensors WearableSensors.ucsd.edu

Sustainable Power and Energy Center SPEC.ucsd.edu

Center for Visual Computing VisComp.ucsd.edu

JACOBS SCHOOL ACADEMIC DEPARTMENTS

Electrical and Computer Engineering

Bioengineering be.ucsd.edu

Computer Science and Engineering cse.ucsd.edu

Mechanical and Aerospace Engineering maeweb.ucsd.edu

ece.ucsd.edu

NanoEngineering ne.ucsd.edu

Structural Engineering structures.ucsd.edu

PH.D. PROGRAMS

Bionformatics and Systems Biology bioinformatics.ucsd.edu

Materials Science and Engineering matsci.ucsd.edu

AFFILIATED RESEARCH INSTITUTES

Qualcomm Institute (Calit2 at UC San Diego) www.calit2.net

Center for Algorithmic & Systems Biology casb.ucsd.edu

Center for Energy Research cer.ucsd.edu

Center for Magnetic Recording Research cmrr.ucsd.edu

Center for Networked Systems cns.ucsd.edu

Center for Wireless Communications cwc.ucsd.edu

Cymer Center for Control Systems and Dynamics ccsd.ucsd.edu

Information Theory & Applications Center ita.ucsd.edu

Institute of Engineering in Medicine iem.ucsd.edu

Powell Structural Research Labs structures.ucsd.edu

San Diego Supercomputer Center www.sdsc.edu

JUDGES

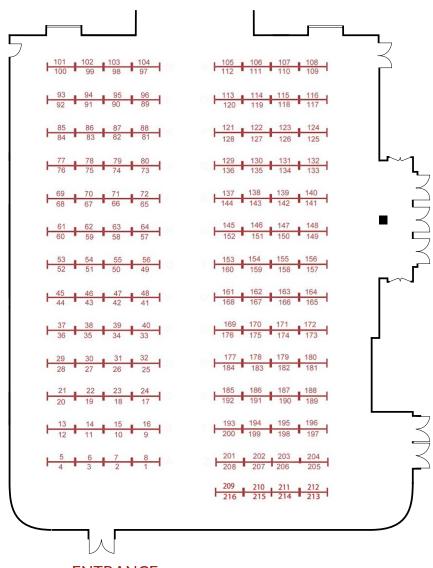
Ben Adams	Ntrepid Corp
Mark Ambrose	Raytheon
Alex Barajas	Envision Engineering
Sumit Bhardwaj	Facebook
Dustin Blair	Illumina
Roger Boss	SPAWAR Systems Center Pacific
Robert Bowdidge	Google
Shane Bowen	Illumina
Richard Brehm	Retired
Jeff Brittan	SeaSpine
Marius Buibas	Brain Corporation
Nick Cordaro	Additive Innovations
Nandan Das	ViaSat
Silvia De Dea	Cymer
Nikolai Devereaux	ViaSat
Raheleh Dilmaghani	SPAWAR Systems Center Pacific
Wayne Dunstan	Cymer
Karl Francis	Accriva Diagnostics
Alex Gantman	Qualcomm
Brett Gardner	NAVAIR Fleet Readiness Center Southwest
Jeff Glasson	VMware
Christopher Hall	International Bridge Technologies
Matthew Hedayat	STG
R.F. Hemphill	Strelitzia Ventures
David Hutches	UC San Diego Jacobs School of Engineering
Robin Ihnfeldt	General Engineering & Research
Darshan Joshi	Informatica
Jeff King	NAVAIR Fleet Readiness Center Southwest
Sam Knight	LocationSmart
Teresa Kruckenberg	UTC Aerospace Systems
Ron Mazza	Congatec
Sami Megally	Kleinfelder
Dwight Navis	MovatE
Ben Ochoa	Integrity Applications Incorporated

JUDGES

Gareth Oskam	Solar Turbines
Michael Paquette	Qualcomm
Gustavo Prado	Xenco Medical
Luis Pineda	Qualcomm (retired)
William Proffer	Leidos
Naomi Ramos	Northrop Grumman
Amy Rasdal	Rasdal Associates Inc
Chris Root	NAVAIR Fleet Readiness Center Southwest
Enrico Ros	Qualcomm
Tim Rueth	von Liebig Entrepreneurism Center at UC San Diego
Stephen Russell	SPAWAR
Maurice Sabado	Leidos
Rusty Sailors	LP3
Jeffrey Salas	VA San Diego Healthcare System
Edward Savarese	ImageTech Corporation
Shweta Shetty	Gimbal
Peter Simpson	Dexcom
Sumeet Singh	Acelio
Billy Spazante	OptCTS
Jason Steiner	Natera
Tricia Sur	ATA Engineering
Eric Takeuchi	Daylight Solutions
Koon Hoo Teo	MERL
Achint Thomas	Yahoo Labs
Mark Title	Advanced Technology Leadership
Mayank Tiwari	Qualcomm
William Townsend	General Atomics - Aeronautical Systems Inc
Hai Tran	Illumina
Jerry Tustaniwskyj	Delta Design
Jiwu Wang	Allele Biotech
Eliot Weitz	ViaSat
Benjamin Wong	Medtronic
Jim Wurzbach	Raytheon
John Yamauchi	Nikon Instruments
Noam Ziv	Kesembe

NOW HIRING NEW GRADS AND INTERNS

Apply online at www.viasat.com/careers



NOTES

Poster Session Map

WEST BALLROOM

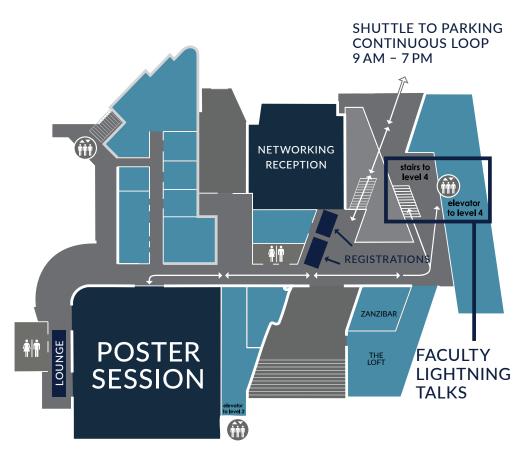
Poster Numbers

AGILE RESEARCH CENTERS

Center for Visual Computing	1 - 10
Center for Wearable Sensors	11 - 18
Sustainable Power and Energy Center	19 - 23
Center for Extreme Events Research	24 - 27

ACADEMIC DEPARTMENTS

Bioengineering	28 - 50
Computer Science and Engineering	51 - 71
Electrical and Computer Engineering	72 - 115
Mechanical and Aerospace Engineering	116 - 184
NanoEngineering	185 - 202
Structural Engineering	203 - 213


PRICE CENTER MAP

Poster Session: Level 2 (West Ballroom)

Faculty Lightning Talks: Level 4 (the Forum)

Networking Reception: Level 2 (East Ballroom)

Parking Shuttle: 9 AM - 7 PM

